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To make informed decisions in natural environments that change over time, humans must update their
beliefs as new observations are gathered. Studies exploring human inference as a dynamical process that
unfolds in time have focused on situations in which the statistics of observations are history-independent.
Yet, temporal structure is everywhere in nature and yields history-dependent observations. Do humans
modify their inference processes depending on the latent temporal statistics of their observations? We
investigate this question experimentally and theoretically using a change-point inference task. We show that
humans adapt their inference process to fine aspects of the temporal structure in the statistics of stimuli. As
such, humans behave qualitatively in a Bayesian fashion but, quantitatively, deviate away from optimality.
Perhaps more importantly, humans behave suboptimally in that their responses are not deterministic, but
variable. We show that this variability itself is modulated by the temporal statistics of stimuli. To elucidate
the cognitive algorithm that yields this behavior, we investigate a broad array of existing and new models
that characterize different sources of suboptimal deviations away from Bayesian inference. While models
with “output noise” that corrupts the response-selection process are natural candidates, human behavior is
best described by sampling-based inference models, in which the main ingredient is a compressed
approximation of the posterior, represented through a modest set of random samples and updated over
time. This result comes to complement a growing literature on sample-based representation and learning in

humans.
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In a variety of inference tasks, human subjects use sensory cues as
well as prior information in a manner consistent with Bayesian
models. In tasks requiring the combination of a visual cue (such as
the shape, position, texture, or motion of an object) with a haptic
(Battaglia et al., 2011; Ernst & Banks, 2002), auditory (Battaglia
et al., 2003), proprioceptive (van Beers et al., 1999), or a secondary
visual cue (Hillis et al., 2004; Jacobs, 1999; Knill, 2007), human
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subjects weigh information coming from each cue according to its
uncertainty in agreement with an optimal probabilistic approach.
Moreover, subjects appear also to integrate optimally prior knowl-
edge on spatial (Kording & Wolpert, 2004, 2006) and temporal
(Jazayeri & Shadlen, 2010; Miyazaki et al., 2005) variables relevant
to inference, in line with Bayes’ rule.

The Bayesian paradigm hence offers an elegant and mathemati-
cally principled account of the way in which humans carry inference
in the presence of uncertainty. In most experimental designs,
however, successive trials are unrelated to each other. Yet, in
many natural situations, the brain receives a stream of evidence
from the environment: inference, then, unfolds in time. Moreover,
natural mechanisms introduce sophisticated temporal statistics in the
course of events (e.g., thythmicity in locomotion, day—night cycles,
and various structures found in speech). Are these temporal dynam-
ics used by the brain to refine its online inference of the state of the
environment?

Furthermore, most studies that support a Bayesian account of
human inference discuss average behaviors of subjects and, thereby,
side step the issue of the variability in human responses. While an
optimal Bayesian model yields a unique deterministic action in
response to a given set of observations, human subjects exhibit noisy,
and thus suboptimal, responses. Methods commonly used to model
response Vvariability, such as “softmax” and probability-matching
response-selection strategies or, more recently, stochastic inference
processes, correspond to different forms of departure from Bayesian
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2 PRAT-CARRABIN ET AL.

optimality. One would like to identify the nature of the deviations
from Bayesian models that can account for the observed discre-
pancies from optimality in human behavior.

To explore these questions, we use an online inference task based
on a “change-point” paradigm, that is, with random stimuli origi-
nating from a hidden state that is subject to abrupt, occasional
variations, which are referred to as “change points.” A growing
theoretical and experimental literature examines inference problems
for this class of signals (Adams & MacKay, 2007; Brown &
Steyvers, 2009; Fearnhead & Liu, 2007; Gallistel et al., 2014;
Glaze, et al., 2015, 2018; Khaw et al., 2017; Nassar et al., 2010,
2012; Piet et al., 2018; Radillo et al., 2017, 2019; Veliz-Cuba et al.,
2016; Wilson et al., 2010, 2013). All of these studies, with the
exception of the work of Fearnhead and Liu (2007), focus on the
history-independent case of random change points that obey Poisson
temporal statistics. Such problems are characterized by the absence
of temporal structure: The probability of occurrence of a change point
does not depend on the realization of past change points. Piet et al.
(2018), Wilson et al. (2010), and Glaze et al. (2018) extend their
studies beyond this simple framework by considering “hierarchical-
Poisson” models in which the change probability is itself subject to
random variations; but, here also, the occurrence of a change point
does not depend on the timing of earlier change points. The experi-
mental studies among the ones cited above have investigated the way
in which human subjects and rodents infer hidden states and whether
they learn history-independent change probabilities.

Because of the pervasiveness of temporal structure in natural
environments, we decided to study human inference in the presence
of “history-dependent” statistics in which the occurrence of a change
point depends on the timing of earlier change points. This introduces
considerable complexity in the optimal inference model (as the hidden
state is no longer Markovian) and serves as a first step toward a more
ecological approach to human inference. For the purpose of compari-
son, we consider two different statistics of change points: the first one
is the Poisson statistics commonly used in earlier studies and the
second is the simplest non-Markovian statistics, in which the proba-
bility of a change point is a function of the timing of the preceding
change point. This setup allows us to examine the effect of the latent
temporal structure on both human behavior and model responses.

In these two contrasting conditions, the behavior of the Bayesian
model and that of human subjects exhibit both similarities and
discrepancies. A salient departure from optimality exhibited by sub-
jects is the variability in their responses. What is more, the shape of the
distribution of responses is not constant but, rather, subject to mod-
ulations during the course of inference. The standard deviation and
skewness of the empirical response distribution are correlated with
those of the optimal, Bayesian posterior; this suggests that the
randomness in subjects’ responses does not reflect some “passive”
source of noise but is in fact related to the uncertainty of the Bayesian
observer.

To account for this nontrivial variability in human responses and
other deviations from optimality, we investigate in what ways
approximations of the Bayesian model alter behavior in our task.
The optimal estimation of a hidden state can be split into two steps:
Bayesian posterior inference (computing optimally the belief distri-
bution over the state space) and optimal response selection (using
the belief distribution to choose the response that maximizes the
expected reward). Suboptimal models introduce systematic errors or
stochastic errors in the inference step or in the response-selection

step, or in both, thus impacting behavior. Models discussed in the
change-point literature, along with new models we introduce,
provide a wide range of such deviations from optimality, which
we compare to experimental data. This allows us to assess how
different sources of suboptimality impact behavior and to what
extent they can capture the salient features in human behavior.
The article is outlined as follows. We first present the main aspects
of our task in which subjects observe a visual stimulus and infer an
underlying, changing, hidden state. The susceptibility of subjects to a
new stimulus is shown to differ appreciably between the two condi-
tions (with and without latent temporal structure) and to adapt to the
statistics of change points. We then analyze the variability in the
subjects’ responses and show how it is modulated over the course of
inference. After deriving the optimal, Bayesian solution of the infer-
ence problem in the context of our task, we examine its behavior in
comparison with experimental data. We then turn to investigating a
broad family of suboptimal models. In particular, motivated by the
form of the variability present in our human data, we examine
stochastic perturbations in both the inference step and in the
response-selection step. These models reflect different forms of sam-
pling: Model subjects either perform inference using samples of
probability distributions or select responses by sampling; the former
option includes models with limited memory as well as sequential
Monte Carlo (particle-filter) models. Finally, we discuss model fitting,
from which we conclude that humans carry out stochastic approx-
imations of the optimal Bayesian calculations through sampling-
based inference (rather than sampling-based response selection).
Our observations confirm and extend the results reported in the
change-point literature on human inference in the context of Poisson
statistics, by exploring a more ecological (Anteneodo & Chialvo,
2009; Campione & Véronis, 2002; Griffin et al., 2000; Hausdorff
et al., 1995; Low et al., 2000; Nakamura et al., 2007, 2008; Nunes
Amaral et al., 2004; Ramus et al., 1999), non-Poisson, temporally
structured environment. Likewise, our results come to complement
those of a number of studies on perception and decision-making that
also investigate inference from stimuli with temporal statistics (Ghose
& Maunsell, 2002; Janssen & Shadlen, 2005; Jazayeri & Shadlen,
2010; Li & Dudman, 2013; Miyazaki et al., 2005; ten Oever et al.,
2014). Our experimental results demonstrate that humans learn
implicitly the temporal statistics of stimuli. Moreover, our work
highlights the variability ubiquitous in behavioral data and shows
that it itself exhibits structure: It depends on the temporal statistics of
the signal and it is modulated over the course of inference. We find that
a model in which the Bayesian posterior is approximated with a set of
samples captures the behavioral variability during inference. This
proposal adds to the growing literature on cognitive “sample-based
representations” of probability distributions (Gershman et al., 2012;
Goodman et al., 2008; Moreno-Bote et al., 2011; Vul et al., 2014).
Our results suggest that the brain carries out complex inference by
manipulating a modest number of samples, selected as a low-
dimensional approximation of the optimal, Bayesian posterior.

Results

Behavioral Task and History-Independent Versus
History-Dependent Stimuli

In our computer-based task, subjects are asked to infer, at
successive trials, 7, the location, on a computer screen, of a hidden
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HUMAN INFERENCE IN CHANGING ENVIRONMENTS 3

point, the state, s, based on an on-screen visual stimulus, x,
presented as a white dot on a horizontal line (Figure 1A, B).
Subjects can only observe the white dots, whose positions are
generated around the hidden state according to a likelihood proba-
bility, g(x,|s;) (Figure 1C, D, blue distribution). The state itself, s,,
follows a change-point process, that is, it is constant except when it
“jumps” to a new location, which happens with probability ¢, (the
“hazard rate” or “change probability””). The dynamics of change
points are, hence, determined by the change probability, g,. To
examine the behavior of models and human subjects in different
“environments,” we choose two kinds of signals which differ in their
temporal structure. History-independent (HI) signals are memory-
less, Poisson signals: ¢, is constant and equal to 0.1. Consequently,
the intervals between two change points last, on average, for 10
trials, and the distribution of these intervals is geometric (Figure 1D,
blue bars). Conversely, history-dependent (HD) signals are charac-
terized by temporal correlation. Change points also occur every 10
trials, on average, but the distribution of the duration of inter-
change-point intervals is peaked around 10. This corresponds to
a change probability, g,, that is an increasing function of the number
of trials since the last change point—a quantity referred to as the
“run-length,” t,. We thus denote it by g,(t,). In HD signals, change
points occur in a manner similar to a “jittered periodic” process,
though the regularity is not readily detected by subjects.

When a change point occurs, the state randomly jumps to a new
state, s, according to a state transition probability, a(s..|s,)
(Figure 1C, D, green distribution). The likelihood, g, and the state
transition probability, a, overlap, thus allowing for ambiguity when
anew stimulus is viewed: Is it a random excursion about the current
state, or has the state changed? At each trial, subjects click with a
mouse to give their estimate, §,, of the state. The reward they receive
for each response is a decreasing function, R, of the distance
between the state and the estimate, |§, — s5;|: One reward point if
the estimate falls within a given, short distance from the state, .25 point
if it falls within twice that distance, and 0 point otherwise (Figure 1E).
The task is presented as a game to subjects: they are told that someone
is throwing snowballs at them. They cannot see this hidden person
(whose location is the state, s,), but they observe the snowballs as white
dots on the screen (the stimulus, x,). After several tutorial runs (in some
of which the state is shown), they are instructed to use the snowballs to
guess the location of the person (i.e., produce an estimate, §,).
Additional details on the task are provided in Method section.

Learning Rates Adapt to the Temporal Statistics of the
Stimulus

A typical example of a subject’s responses is displayed in
Figure 2A. To describe the data, we focus, throughout this article,
on three quantities: the learning rate, defined as the ratio of the
“correction,” $,,; — §,, to the “surprise,” x,.; —§;; the repetition
propensity, defined as the proportion of trials in which the learning
rate vanishes (5,,; = §,); and the standard deviation of the responses
of the subjects. The learning rate represents a normalized measure of
the susceptibility of a subject to a new stimulus. If the new estimate,
5,41, is viewed as a weighted average of the previous estimate, §,,
and the new stimulus, x,,, the learning rate is the weight given to
Xr+1. A learning rate of O means that the subject has not changed its
estimate upon observing the new stimulus; a learning rate of 0.5
means that the new estimate is equidistant from the previous

estimate and the new stimulus; and a learning rate of 1 means
that the new estimate coincides with the new stimulus, and the past is
ignored (Figure 2A).

Our data show that for human subjects the learning rate is not
constant, and can vary from no correction at all (learning rate ~ 0) to
full correction (learning rate = 1). We investigated how the average
learning rate behaved in relation to the run-length, in the HI and HD
conditions. As the run-length is not directly accessible to subjects, in
our analyses we used the empirical run-length, 7, a similar quantity
derived from the subjects’ data (see Method section.) Unless other-
wise stated, we focus our analyses on cases in which the surprise,
X;41 — 84, is in the [8, 18] window, in which there is appreciable
ambiguity in the signal.

A first observation emerging from our data is that the learning rate
changes with the run-length in a quantitatively different fashion
depending on the condition (HI or HD). In the HI condition, learning
rates at short run-length (T € [3, 6]) are significantly higher than at
long run-length (T € [9, 10)), that is, the learning rate decreases with
run-length (Figure 2B, blue bars). In the HD condition, the opposite
occurs: Learning rates are significantly higher at long run-lengths
(Figure 2B, orange bars), indicating that subjects modify their
inference depending on the temporal structure of the signal. In addition,
at short run-lengths, learning rates are significantly lower in the HD
condition than in the HI condition; this suggests that subjects take into
account the fact that a change is less likely at short run-lengths in the
HD condition. The opposite holds at long run-lengths: HD learning
rates are markedly larger than HI ones (Figure 2B).

Inspecting the dependence of the learning rate on the run-length
(Figure 2C), we note that the HD learning-rate curve adopts a “smile
shape,” unlike the monotonic curve in the HI condition. (A statistical
analysis confirms that these curves have significantly different
shapes; see Method section.) The HI curve is consistent with a
learning rate that simply decreases as additional information is
accumulated on the state. In the HD condition, initially the learning
rate is suppressed, then boosted at longer run-lengths, reflecting the
modulation in the change probability.

These observations demonstrate that subjects adapt their learn-
ing rate to the run-length, and that in the HD condition subjects
make use of the temporal structure in the signal. These results are
readily intuited: Shortly after a change point, the learning rate
should be high, as little is known about the new state, while at
longer run-lengths the learning rate should tend to zero as the state
is more and more precisely inferred. This decreasing behavior is
observed, but only in the HI condition. The HD condition intro-
duces an opposing effect: As the run-length grows, new stimuli are
increasingly likely to divulge the occurrence of a new state, which
advocates for adopting a higher learning rate. This tradeoff is
reflected in our data in the “smile shape” of the HD learning-rate
curve (Figure 2C; these trends subsist at longer run-lengths, see
Supplemental Figure B1). The increase in learning rate at long
run-lengths is reminiscent of the behavior of a driver waiting at a
red light: As time passes, the light is increasingly likely to turn
green; as aresult, the driver is increasingly susceptible to react and
start the car.

Human Repetition Propensity

A closer look at the data presented in the previous section
reveals that in a number of trials the learning rate vanishes, that is,
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Figure 1
Inference Task and Change Probability, q, in the HI and HD Conditions
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Note. (A) The various elements in the task appear on a horizontal white line in the middle of a gray screen. a: Subject’s pointer (green
disk). b: New stimulus (white disk). c: State (red disk, only shown during tutorial runs). d: Position of subject’s previous click (green dot). e:
For half of subjects, previous stimuli appear as dots decaying with time. (B) Successive steps of the task: 1, 2: A new stimulus is displayed;
to attract the subject’s attention, it appears as a large, white dot for 400 ms, after which it becomes smaller. 3: The subject moves the pointer.
4: The subject clicks to provide an estimate of the position of the state. After 100 ms, a new stimulus appears, initiating the next trial.
(C) The position of the stimulus on the horizontal axis, x,, is generated randomly around the current state, s,, according to the
triangle-shaped likelihood function, g(x,|s,). The state itself is constant except at change points, at which a new state, s,,, is
generated around s, from the bimodal-triangle-shaped transition probability, a(s,|s,). The run-length, t,, is defined as the
number of trials since the last change point. Change points occur with the change probability g(t,) (orange bars), which depends
on the run-length in the HD condition (depicted here). (D) Top panel: Change probability, g(t), as a function of the run-length,
T. It is constant and equal to 0.1 in the HI condition, while it increases with the run-length in the HD condition. Consequently,
the distribution of intervals between two consecutive change points (bottom panel) is geometric in the HI condition whereas it is
peaked in the HD condition; in both conditions, the average duration of inter-change-point intervals is 10. (E) Compared extents
of the likelihood, g(x,|s,) (green), the state transition probability, a(s..,|s;) (blue), the “shot” resulting from a click (green dot),
and the radii of the 1-point (red disk) and 0.25-point (gray circle) reward areas. A shot overlapping red (gray) area yields 1
(0.25) point.

S,41 = 5,. The distribution of the subjects’ corrections, 5.1 —§;, repetition trials the “repetition propensity.” The latter varies with
exhibits a distinct peak at zero (Figure 3A). In other words, in a the run-length: It increases with t in both HI and HD conditions,
fraction of trials, subjects click twice consecutively on the same before decreasing in the HD condition for long run-lengths

pixel. We call such a response a “repetition,” and the fraction of (Figure 3B).
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Figure 2

Human Learning Rates Depend on the Temporal Statistics (HI or HD) of the Stimulus
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What may cause the subjects’ repetition behavior? The simplest
explanation is that, after observing a new stimulus, a subject may
consider that the updated best estimate of the state lands on the
same pixel as in the previous trial. The width of one pixel in
arbitrary units of our state space is 0.28. As a comparison, the
triangular likelihood, g, has a standard deviation, ,, of 8.165. An
optimal observer estimating the center of a Gaussian density of
standard deviation c,, using 10 samples from this density, comes
up with a posterior density with standard deviation o,/ V10 = 2.6.
Therefore, after observing even 10 successive stimuli, the subjects’
resolution is not as fine as a pixel (it is, in fact, 10 times coarser). This
indicates that the subjects’ repetition propensity is higher than the
optimal one (the behavior of the optimal model, presented below,
indeed exhibits a lower average repetition propensity than that of the
subjects). Another possible explanation is that even though the new
estimate falls on a nearby location, a motor cost prohibits a move if it
is not sufficiently extended to be “worth it” (Morasso, 1981; Rigoux
& Guigon, 2012; Shadmehr, 2009; Wolpert, 1997). A third, heuristic
explanation is that humans are subject to a “repetition bias” according
to which they repeat their response irrespective of their estimate of
the state.

Regardless of its origin, the high repetition propensity in
data raises the question of whether it dominates the behavior
of the average learning rate. As a control, we excluded all
occurrences of repetitions in subjects’ data and carried out the
same analyses on the truncated dataset. We reached identical
conclusions, namely, significant discrepancies between the HI
and HD learning rates at short and long run-lengths, albeit
with, naturally, higher average rates overall (see Supplemental
Figure B2).

The Variability in Subjects’ Responses Evolves Over the
Course of Inference

In the previous two sections, we have examined two aspects of
the distribution of responses: the average learning rate and the
probability of response repetition. We now turn to the variability
in subjects’ responses. Although all subjects were presented with
identical series of stimuli, x,, their responses at each trial were not the
same (Figure 4A). This variability appears in both HI and HD
conditions. The distribution of responses around their averages at
each trial has a width comparable to that of the likelihood
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Figure 3
Human Repetition Propensity Depends on the Temporal Statistics
and Dynamically on the Run-Length
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Note. (A) Histogram of subject corrections (difference between two
successive estimates, §,,; — §;), in the HI (blue) and HD (orange) condi-
tions. The width of bins corresponds to one pixel on the screen, Thus, the
peak at zero represents the repetition events (5,,; = S§;). (B) Repetition
propensity, that is, proportion of occurrences of repetitions in the re-
sponses of subjects, as a function of run-length, in the HI (blue) and HD
(orange) conditions. Stars indicate p-values of Fisher’s exact test of
equality of the repetition propensities between the two conditions, at
each run-length.

distribution, g(x,|s;) (Figure 4B). More importantly, the variability
in the responses (as measured by the standard deviation) is not
constant, but decreases with successive trials following a change
point at short run-lengths (Figure 4C). Comparing the HI and HD
conditions, we observe that for run-lengths shorter than 7, the
standard deviation in the HD condition is significantly lower
than that in the HI condition. At longer run-lengths, the two curves
cross and the variability in the HD condition become significantly
higher than in the HI condition. The HD curve adopts, again, a
“smile shape” (Figure 4C). What is the origin of the response
variability? Because it changes with the run-length and the HI
versus HD condition, it cannot be explained merely by the presence
of noise independent from the inference process, such as pure motor
noise. In order to encompass human behavior in a theoretical frame-
work and to investigate potential sources of this inference-dependent
variability, we start by comparing the recorded behavior with that of an
optimal observer.

Optimal Estimation: Bayesian Update and Maximization
of Expected Reward

We derive the optimal solution for the task of estimating the
hidden state, s,, given random stimuli, x,. The first step (the
“inference step”) is to derive the optimal posterior distribution
over the state, s;, using Bayes’ rule. Because the state is a random
variable coupled with the run-length, t,, another random variable,
it is convenient to derive the Bayesian update equation for the
(s, T,) pair (more precisely, the (s,, T,) pair verifies the Markov
property, whereas s, alone does not, in the HD condition). We
denote by x;., the string of stimuli received between trial 1 and
trial ¢, and by p,(s, T|x;.,) the probability distribution over (s, 7), at
trial ¢, after having observed the stimuli x;.,. At trial # + 1, Bayes’
rule yields p,, (s, T|x1.41) & g(11|8)Pis1(s, T|x1.,). Furthermore,
we have the general transition equation,

P (s,7lxy) = Z th+l (slse,T)pi (sl )ds,, ey

T
St
given by the change-point statistics. As the transition probability,
Dir1(s,T|s;, T,), can be expressed using g(t,) and a(s|s,) (see
Method section for details), we can reformulate the update equa-
tion as

1
Pyt (8T1X1041) =flg(xz+1 |s) {“rzoZQ(‘n)
+ T,

X [a(s\s,)p,(s,,r,|x1:,)ds,

St

+ Teso(1 =gt = 1)p,(s;7 — 1|x1:,)] , (@)

where 1. =1 if condition C is true, 0 otherwise; and Z,,; is a
normalization constant. This equation includes two components: a
“change-point” one (t = 0) and a “no change-point” one (t > 0).
We call the model that performs this Bayesian update of the
posterior the Optimallnference model.

Finally, following the inference step just presented (i.e., the
computation of the posterior), a “response-selection step” deter-
mines the behavioral response. At trial ¢ and for a response §,,
the expected reward is E;R = [R(|3; — s|)p,(s|x;.,)ds. The optimal
strategy selects the response, §,, that maximizes this quantity. Before
exploring the impact of relaxing the optimality in the inference
step, in the response-selection step, or both, we examine, first, the
behavior of the optimal model.

The Optimal Model Captures Qualitative Trends in
Learning Rate and Repetition Propensity

Equipped with the optimal model for our inference task, we
compare its output to experimental data. For short run-lengths
(T < 8), the learning rates in both HI and HD conditions decrease
as a function of the run-length, and the HD learning rates are lower
than their HI counterparts. They increase, however, at longer run-
lengths (t > 8) and ultimately exceed the HI learning rates; these,
by contrast, decrease monotonically (Figure 5A, solid lines).
These trends are similar to those observed in behavioral data
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Figure 4

The Variability in Subjects’ Responses is Modulated During Infer-
ence and these Modulations Depend on the Temporal Statistics of
the Stimulus
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Note. (A) Responses of subjects in an example of five consecutive stimuli.
In this example, there is no change point and the state (green) is constant. At
each trial (from top to bottom), subjects observe the stimuli (blue) and
provide their responses (red bars). A histogram of the locations of the
responses is obtained by counting the number of responses in bins of width 3
(light red). (B) Distribution of the responses of subjects around their average
(red), compared to the likelihood, g (blue), and the state transition probabil-
ity, a (green). (C) Standard deviation of the responses of subjects versus run-
length, T, in the HI (blue) and HD (orange) conditions. Stars indicate p-value
of Levene’s test of equality of variance between the two conditions, at each 7.
Shaded bands indicate the standard error of the standard deviation (Ahn &
Fessler, 2003).

(Figure 5A, dashed lines). Hence, the modulation of the subjects’
learning rates with the temporal statistics of the stimuli, and over
the course of inference, is consistent, at least qualitatively, with
that of a Bayesian observer.

Although a Bayesian observer can, in principle, hold a contin-
uous posterior distribution, we discretize, instead, the posterior, in
order to reproduce the experimental condition of a pixelated
screen. This discretization allows for repetitions. The repetition
propensity of the optimal model varies with the run-length: It
increases with 7 in both HI and HD conditions and decreases in the
HD condition for long run-lengths, a pattern also found in
experimental data (Figure 5B).

Hence, the optimal model captures the qualitative trends in
learning rate and repetition propensity present in the responses of
the subjects. Quantitative differences, however, remain. The learn-
ing rates of the subjects, averaged over both HI and HD conditions,
are 43% higher than the average learning rate in the optimal model,
and the average repetition propensity of the subjects is 9 percentage
points higher than that in the optimal model.

Relation Between Human Response Variability and the
Bayesian Posterior

The optimal model captures qualitatively the modulations of
learning rate and repetition propensity in subjects, but it is
deterministic (at each trial, the optimal estimate is a deterministic
function of past stimuli) and, as such, it does not capture the
variability inherent to the behavior of subjects. The modulations
of the behavioral variability as a function of the run-length and of
the temporal structure of the signal (Figure 4C) are a sign that the
variability evolves as the inference process unfolds. The standard
deviation of the optimal Bayesian posterior decreases with the
run-length, in the HI condition: following a change point, the
posterior becomes narrower as new stimuli are observed. In
the HD condition, the standard deviation of the posterior exhibits
a “smile shape” as a function of the run-length: It decreases until
the run-length reaches 5, then increases for larger run-lengths
(Figure 5C). This behavior is similar to that of the standard
deviation of the responses of the subjects. In fact, the standard
deviation of the Bayesian posterior and that of subjects’ responses
across trials are significantly correlated, both in the HI condition
(Pearson’s r = .53, p < .0001) and in the HD condition (» = .25,
p < .0001). In other words, when the Bayesian posterior is wide
there is more variability in the responses of subjects, and vice-
versa (Figure 6A).

Turning to higher moments of the distribution of subjects’
responses, we find that the skewness of this distribution appears,
also, to grow in proportion to the skewness of the Bayesian posterior
(Figure 6B). The correlation between these two quantities is posi-
tive and significant in the two conditions (HI: r = .21, p < .0001;
HD: r = .14, p < .0001. These results are not driven by the
boundedness of the response domain, which could have artificially
skewed the distribution of response; see Supplemental Figure B3).
Thus, not only the width, but also the asymmetry in the distribu-
tion of subjects’ responses is correlated with that of the Bayesian
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Figure 5
The Optimal Model Captures Qualitatively the Behavior of the Learning Rate and of the Repetition Propensity in Subjects but does not
Account for their Variability

posterior. These observations support the hypothesis that the behav-
ioral variability in the data is at least in part related to the underlying
inference and decision processes.

with the aim of resolving the qualitative and quantitative discre-
pancies between the behavior of the optimal model and that of the

(A) Learning rate (B) Repetition propensity (C) Standard deviation
30%
04\ — HI — Subjects 1 6.0
HD — Optimallnference S PPN L __\ -----------------------------------------
% 1 oS N T N T T —— L ]
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Note. (A) Average learning rate as a function of the run-length. In the HI condition, the learning rate decreases with the run-length, for both

the optimal model and the subjects. In the HD condition, learning rates in the optimal model are lower than in the HI condition, for short run-
lengths, and higher for long run-lengths. The learning rate of subjects exhibits a similar smile shape in the HD condition. (B) Repetition
propensity, that is, proportion of repetition trials, as a function of the run-length. (C) Standard deviation of the responses of the subjects
(dashed lines) and of the optimal model (solid lines), and standard deviation of the optimal, Bayesian posterior distribution (long dashes), as a
function of the run-length. The optimal model is deterministic and, thus, exhibits no variability in its responses. The optimal posterior
distribution, however, has a positive standard deviation which decreases with the run-length, in the HI condition, and exhibits a smile shape, in
the HD condition.

In what follows, we introduce an array of suboptimal models,

Figure 6
Both Width and Skewness of the Distribution of Subjects’ Responses are Correlated With Those of the Bayesian Posterior
( A)l() Standard deviation (B) Skewness
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Note. Empirical standard deviation (A) and Skewness (B) of subjects’ responses as a function of the standard deviation and skewness of the

Bayesian posterior, in the HI (blue) and HD (orange) conditions, and linear regressions (ordinary least squares; dashed lines). On 85% of

trials, the standard deviation of the Bayesian posterior is lower than 6.8 (vertical gray line). Shaded bands indicate the standard error of the

mean.

subjects. In particular, we formulate several stochastic models that
include possible sources of behavioral variability. Two scenarios are
consistent with the modulations of the magnitude and asymmetry of
the variability with the width and skewness of the Bayesian poste-
rior: stochasticity in the inference step (i.e., in the computation of the
posterior) and stochasticity in the response-selection step (i.e., in the
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computation of an estimate from the posterior). The models we
examine below cover both these scenarios.

Suboptimal Models Reflecting Cognitive Limitations

In the previous sections, we have examined the learning rate of
the subjects, their repetition propensity, and the variability in their
responses; comparison of the behaviors of these quantities to that of
the Bayesian, optimal model, revealed similarities (namely, the
qualitative behaviors of the learning rate and of the repetition
propensity) and discrepancies (namely, quantitative differences in
these two quantities, and lack of variability in the optimal model).
Although the latter call for a non-Bayesian account of human
behavior, the former suggest not to abandon the Bayesian approach
altogether (in favor, for instance, of ad hoc heuristics). Thus, we
choose to examine a family of sub-optimal models obtained from a
sequence of deviations away from the Bayesian model, each of
which captures potential cognitive limitations hampering the opti-
mal performance.

In the Bayesian model, three ingredients enter the generation of a
response upon receiving a stimulus: First, the belief on the structure
of the task and on its parameters; second, the inference algorithm
which produces a posterior on the basis of stimuli; third, the
selection strategy which maps the posterior into a given response.
The results presented above, exhibiting the similarity between the
standard deviation of the Bayesian posterior and the standard
deviation of the responses of the subjects (Figure 5C), point to a
potential departure from the optimal selection strategy, in which the
posterior is sampled rather than maximized. This sampling model,
which we implement (see below), captures qualitatively the modu-
lated variability of responses; sizable discrepancies in the three
quantities we examine, however, remain (see Method section).
Hence, we turn to the other ingredients of the estimation process,
and we undertake a systematic analysis of the effects on behavior of
an array of deviations away from optimality.

Below, we provide a conceptual presentation of the resulting
models; we fit them to experimental data and comment on what the
best-fitting models suggest about human inference and estimation
processes. For the detailed mathematical descriptions of the models
and an analysis of the ways in which their predictions depart from
the optimal behavior, we refer the reader to the Method section.

Models With Erroneous Beliefs on the Statistics of the
Signal

Our first model challenges the assumption, made in the optimal
model, of a perfectly faithful representation of the set of parameters
governing the statistics of the signal. Although subjects were
exposed in training phases to blocs of stimuli in which the state,
s,, was made visible, they may have learned the parameters of the
generative model incorrectly. We explore this possibility, and, here,
we focus on the change probability, g(t), which governs the
dynamics of the state. (We found that altering the value of this
parameter had a stronger impact on behavior than altering the values
of any of the other parameters.) In the HD condition, ¢(t) is a
sigmoid function shaped by two parameters: Its slope, A = 1, which
characterizes “how suddenly” change points become likely, as a
function of t; and the average duration of inter-change-points
intervals, T = 10. In the HI condition, ¢ = .1 is constant; it can

also be interpreted as an extreme case of a sigmoid in which A = 0
and T = 1/g = 10. We implement a suboptimal model, referred to
as IncorrectQ, in which these two quantities, A and 7, are treated as
free parameters, thus allowing for a broad array of different beliefs in
the temporal structure of the signal (Figure 7A).

Models With Limited Memory

Aside from operating with an inexact representation of the
generative model, human subjects may use a suboptimal form
of inference. In the HD condition, the optimal model maintains
“in memory” a probability distribution over the entire (s, T)-space
(see Equation 2), thus keeping track of a rapidly increasing number
of possible histories, each characterized by a sequence of run-
lengths. Such a process entails a large computational and memory
load. We explore suboptimal models that alleviate this load by
truncating the number of possible scenarios stored in memory; this
is achieved through various schemes of approximations of the
posterior distribution. More specifically, in the following three
suboptimal models, the true (marginal) probability of the run-lengths,
pix|x.,), is replaced by an approximate probability distribution.

A first, simple way of approximating the marginal distribution of
the run-lengths is to consider only its mean, that is, to replace it with
a Kronecker delta which takes the value 1 at an estimate of the
expected value of the run-lengths. Nassar et al. (2010) introduce a
suboptimal model based on this idea, some details of which depend
on the specifics of the task; we implement a generalization of this
model, adapted to the parameters of our task. We call it the tMean
model. While the optimal marginal distribution of the run-lengths,
pdt|x1.,), spans the whole range of possible values of the run-length,
it is approximated, in the tMean model, by a delta function
parameterized by a single value, which we call the “approximate
expected run-length” and which we denote by 7,. Upon the obser-
vation of a new stimulus, x,,, the updated approximate expected
run-length, 7,,;, is computed as a weighted average between two
values of the run-length, O and 7, + 1, which correspond to the two
possible scenarios: with and without a change point at trial ¢ + 1.
Each scenario is weighted according to the probability of a change
point at trial # + 1, given the stimulus, x,, ;. This model has no free
parameter (Figure 7B, second panel).

In a second limited-memory model, contrary to the TMean model
just presented, the support of the distribution of the run-lengths is
not confined to a single value. This model generalizes the one
introduced by Wilson et al. (2013). In this model, the marginal
distribution of the run-lengths, p,(t|x;.,), is approximated by another
discrete distribution defined over a limited set of constant values,
called “nodes” (Figure 7B, third panel). We call this model tNodes.
A difference with the previous model (tMean) is that the support of
the distribution is fixed, that is, the set of nodes remains constant as
time unfolds, whereas in the T™ean model the single point of
support, T,, depends on the stimuli received. The details of the
implementation of this algorithm and, in particular, of how the
approximate marginal distribution of the run-lengths is updated
upon receiving a new stimulus, are provided in Method section. The
model is parameterized by the number of nodes, N,, and the values
of the nodes. We implement it with up to five nodes.

The two models just presented are drawn from the literature. We
propose a third suboptimal model that relieves the memory load in
the inference process. We also approximate, in this model, the
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lllustration of the Erroneous Beliefs in the IncorrectQ Model and of the Approximations Made in the t™Mean, tNodes, and

tMaxProb Models
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Note. (A) Change probability, g(t), as a function of the run-length (first row), and distribution of intervals between two consecutive
change points (second row), for various beliefs on the parameters of the change probability: the slope, A, and the average duration of
intervals, 7. For a vanishing slope (A = 0), the change probability is constant and equal to 1/7T (first panel). With 7 = 10 this corresponds
to the HI condition (blue lines). For a positive slope (A > 0), the change probability increases with the run-length (i.e., a change-point
becomes more probable as the time since the last change-point increases), and the distribution of intervals between two successive
change-points is peaked. The HD condition (orange Icines) orresponds to A = 1 and T = 10. (B) Schematic illustration of the marginal
distribution of the run-length, p(t), in each model was considered. The Optimallnference model assigns a probability to each possible
value of the run-length, 7, and optimally updates this distribution upon receiving stimuli (first panel). The tMean model uses a single
run-length which tracks the inferred expected value, T, (second panel). The tNodes model holds in memory a limited number, N., of fixed
hypotheses on T (“nodes”), and updates a probability distribution over these nodes; N; = 2 in this example (third panel). The tMaxProb
model reduces the marginal distribution by discarding less likely run-lengths; in this example, two run-lengths are stored in memory at

any given time (fourth panel).

marginal distribution of the run-lengths, p.(t|x;.), by another,
discrete distribution. We call N, the size of the support of our
approximate distribution, that is, the number of values of the run-
length at which the approximate distribution does not vanish.
A simple way to approximate p,(t|x.,) is to identify the N, most
likely run-lengths, and set the probabilities of the other run-lengths
to zero. More precisely, if, at trial 7, the run-length takes a given
value, 7, then, upon the observation of a new stimulus, at trial # + 1
it can only take one of two values: O (if there is a change point) or
T, + 1 (if there is no change point). Hence, if the approximate
marginal distribution of the run-lengths at trial # is nonvanishing for
N values, then the updated distribution is nonvanishing for N; + 1
values. We approximate this latter distribution by identifying the
most unlikely run-length, arg min p,,(t|x;...1), setting its proba-
bility to zero, and renormalizing the distribution. In other words, at
each step, the N, most likely run-lengths are retained while the least
likely run-length is eliminated. We call this algorithm tMaxProb
(Figure 7B, fourth panel). It is parameterized by the size of the
support of the marginal distribution, N, which can be understood as
the number of “memory slots” in the model.

A Model With Limited Run-Length Memory Through
Sampling-Based Inference

The five models considered hitherto (Optimallnference, Incor-
rectQ, t™Mean, tNodes, and tMaxProb) are deterministic: a given
sequence of stimuli implies a given sequence of responses, in
marked contrast with the variability exhibited in the responses of
subjects. To account for this experimental observation, we suggest
several models in which stochasticity is introduced in the generation
of a response. Response stochasticity can stem from the inference
step, the response-selection step, or both. We present, first, a model
with stochasticity in the inference step.

This model, which we call tSample, is a stochastic version of the
TMaxProb model: Instead of retaining deterministically the N, most
likely run-lengths at each trial, the tSample model samples N run-
lengths using the marginal distribution of the run-lengths, p,(t|x;.,).
More precisely, if at trial # + 1 the marginal distribution of the run-
lengths, p,41(t|x;..+1), is nonvanishing for N.+1 values, then a run-
length is sampled from the distribution [1 — p, i (Tlxy0 1))/ 2041,
where z,.; is a normalization factor, and the probability of this
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run-length is set to zero (Figure 8). In other words, while the
TMaxProb model eliminates the least likely run-length determin-
istically, the tSample model eliminates one run-length stochasti-
cally, in such a fashion that less probable run-lengths are more
likely to be eliminated. The tSample model has one parameter,
N, the size of the support of the marginal distribution of the
run-lengths.

Stochastic Inference Model With Sampling in Time and in
State Space: The ParticleFilter

Although the tMean, tNodes, t™MaxProb, and tSample
models introduced above relieve the memory load by prescrib-
ing a form of truncation on the set of run-lengths, inference in
these models is still executed on a continuous state space labeled
by s (or, more precisely, on a discrete space with resolution as fine
as a pixel). Much as subjects may retain only a compressed
representation of probabilities along the T axis, it is conceivable
that they may not maintain a full probability function over the
1089-pixel-wide s axis, as they carry out the behavioral task.
Instead, they may infer using a coarser spatial representation, in
order to reduce their memory and computational loads. Monte
Carlo algorithms perform such approximations by way of ran-
domly sampling the spatial distribution; sequential Monte Carlo
methods, or “particle filters,” were developed in the 1990s to
address Hidden Markov Models, a class of hidden-state problems
within which falls our inference task (Arulampalam et al., 2002;
Doucet & Johansen, 2008; Gordon et al., 1993). Particle filters
approximate a distribution by a weighted sum of delta functions.
In our case, a particle i at trial t is a triplet, (s,i, 'c,i, w,i), composed
of a state, a run-length, and a weight; a particle filter with
N, particles approximates the posterior, p,(s, t|x,), by the
distribution

Zw, CALLE 3)

Di(s,t|xr ;)

where 8(s — s,) is a Dirac delta function and 6,5; a Kronecker
delta. In other words, a distribution over the (s,T) space is
replaced by a (possibly small) number of points, or samples,
in that space, along with their probability weights.

To obtain the approximate posterior at trial # + 1 upon the
observation of a new stimulus, x,.;, we note, first, that the
Bayesian update (Equation 2) of the approximate posterior,
P:(s,x|xy.;), is a mixture (a weighted sum) of the Np Bayesian
updates of each single particle (i.e., Equation 2 with the prior,
pi(s,T|x1.,), replaced, for each particle, by (s — s,")ST,Trz‘). Then,
we sample independently each component of the mixture (i.e.,
each Bayesian update of a particle), to obtain stochastically the
updated particles, (s,+1, 'c,+1) and to each particle is assigned
the weight of the corresponding component in the mixture. The
details of the procedure just sketched, in particular the derivation
of the mixture and of its weights, and how we handle the
difficulties arising in practical applications of the particle filter
algorithm, can be found in Method section. This model, which
we call ParticleFilter, has a single free parameter: the number of
particles, Np (Figure 8).

Models With Variability Originating in the
Response-Selection Step

The tSample and ParticleFilter models presented above
reduce the dimensionality of the inference problem by pruning
stochastically the posterior, in the inference step. But, as we
pointed out, the behavior of the standard deviation of the re-
sponses of the subjects, as compared to that of the width of the
Bayesian posterior (Figure 5C), hints at a more straightforward
mechanism at the origin of response variability. The model we
now introduce features stochasticity not in the inference step, but
rather in the response-selection step of an otherwise optimal
model. In this model, the response is sampled from the marginal
posterior on the states, p,(s|x;.,), that is, the response, 3, is a random
variable whose density is the posterior. This contrasts with the
optimal response-selection strategy, which maximizes the expected
score based on the Bayesian posterior, and which was implemented
in all the models presented above. Henceforth, we denote the
optimal, deterministic response-selection strategy by Max, and
the suboptimal, stochastic strategy just introduced by Sampling.
It has no free parameter.

Another source of variability in the response-selection step
might originate in a limited motor precision, in the execution of
the task. To model this motor variability, in some implementations
of our models we include a fixed, additive, Gaussian noise,
parameterized by its standard deviation, c,,, to obtain the final
estimate. Both this motor noise and the Sampling strategy entail
stochasticity in response selection. The former, however, has a
fixed variance, G,ﬁ, while the variance of the latter depends on the
posterior which varies over the course of inference (Figure 5C).
When we include motor noise in the Max or in the Sampling
strategies, we refer to these as NoisyMax and NoisySampling,
respectively.

In sum, we have described four response-selection strategies
(Max, Sampling, NoisyMax, and NoisySampling), and seven infer-
ence strategies, of which five are deterministic (Optimallnference,
IncorrectQ, tMean, tNodes, and tMaxProb) and two are stochas-
tic (tSample and ParticleFilter). We can combine any inference
strategy with any response-selection strategy: Thus, we have at
hand 4 x 7 = 28 different models, 27 of which are suboptimal,
obtained from pairings of the inference and selection strategies.
We label each of the 28 models by the combination of the two
names referring to the two steps in the process, for example,
FParticleFilter + Sampling.

Fitting Models to Experimental Data Favors
Sample-Based Inference

The 27 suboptimal models introduced in the previous section
yield a range of discrepancies from the optimal behavior. The
ways in which each deviation from the optimal model impacts
behavior are examined in Method section; here, we ask how well
these models account for the behavior of human subjects. Whereas
the optimal model, Optimallnference + Max, computes the
Bayesian posterior (Optimallnference) and selects the maximiz-
ing response (Max), the suboptimal models mimic cognitive
limitations that may prevent the brain from reaching optimality:
incorrect belief in the temporal structure of the signal (Incor-
rectQ), compressed representation of the Bayesian posterior,
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Figure 8
Posterior Density Over Three Successive Trials for the Optimallnference Model, the tSample Model With N, = 2, and
the ParticleFilter Model With 10 Particles
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Note. The three panels correspond to the three successive trials. Each row except the last one corresponds to a different run-length, t.
In these rows, the horizontal bars show the marginal probability of the run-length, p(t|x,.,). The posterior (i.e., the joint distribution of
the run-length and the state, p(s,t|x;.,) is shown as a function of the state, s, for the Optimallnference model (blue shaded curve), the
tSample model (pink line), and the ParticleFilter model (orange vertical bars). The marginal probability of the run-length, p(t|x,.,), for
the Optimallnference model, is additionally reflected in the hue of the curve (darker means higher probability). For the ParticleFilter
model, the heights of the bars are proportional to the weights of the particles. When the state, s, of two or more particles coincides, a
single bar is shown with a height proportional to the sum of the weights. The last row shows the marginal distributions of the states,
p(t|x1:,) = > . p(sitlxy.,) , along with the location of the stimulus at each trial (red vertical line). At trial 7 (left panel), the probability
of the run-length T = 5 dominates in the three models. In the TSample model, it vanishes at run-lengths from O to 3, and it is very small
for T = 4. In the ParticleFilter model, the run-lengths of the 10 particles are all 5, and thus the probability of all other run-lengths is
zero. At trial # + 1 (middle panel), upon observation of the new stimulus, x; , |, the marginal probability of the vanishing run-length
(tr = 0), which corresponds to a “change-point” scenario, becomes appreciable in the Optimallnference model (top row). The
probability of the run-length T = 6 (a “no change-point scenario”) is however higher. As a result, a “bump” appears in the marginal
distribution of the state, around the new stimulus (bottom row). In the TSample model the optimal update of the posterior results in a
nonvanishing probability for three run-lengths (t = 0, 5, and 6), more than the number of “memory slots” available (N, = 2). One run-
length is thus randomly chosen, and its marginal probability is set to zero; in the particular instantiation of the model presented
here, the run-length t = 0 is chosen, and thus the resulting marginal probability of run-length is nonvanishing for T = 5 and 6
only. In the ParticleFilter model, the stochastic update of the particles results in seven particles adopting a vanishing run-length,
and the probability of a “change-point” scenario (t = 0) becomes higher than that of the “no change-point” scenario (t = 6)
supported by the remaining three particles. The various marginal distributions of the states obtained in these three models (bottom
row) illustrate how the tSample model assigns a negligible probability to a set of states whose probability is substantial under the
Optimallnference model, while the ParticleFilter yields a coarse approximation reduced to a support of 10 states (as opposed to a
continuous distribution).

either deterministically (tMean, tNodes, and TtMaxProb) or sto-
chastically (tSample and ParticleFilter), and noise introduced in
the response-selection step, with a width either scaling with that of
the posterior (Sampling), or constant (NoisyMax), or a combina-
tion of the two (NoisySampling).

To evaluate the ability of each of these models to account for
human behavior, we compare quantitatively their respective
outputs with the responses of human subjects. For the three
quantities we examine (the learning rate, the repetition propen-
sity, and the standard deviation of the responses), we compute
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the normalized mean squared error (NMSE) (sometimes referred
to as the “Fraction of Variance Unexplained” in the context of
linear regressions). It is defined, for a given model and for each
quantity, as the ratio of the mean squared error in the model
output as compared to data, and the variance of the quantity
under scrutiny in the behavioral data. We fit each of our models
to human data, using the average of the three NMSEs as our error
measure. (We note that the Optimallnference inference strategy
is a special case of all the other inference strategies, except
tMean, thus its NMSE cannot be lower than that of these
strategies. Likewise, the Max and Sampling response-selection
strategies are special cases of the NoisyMax and NoisySampling
strategies, respectively.)

We find that the five best-fitting models make use of stochastic
compression in the inference step, in either the tSample approxi-
mation or the ParticleFilter approximation (Table 1). These models
all reproduce the qualitative trends in the behavior of subjects with
respect to our three measures: For the learning rate and the
standard deviation, the “smile shape” of the HD curve, which
crosses a decreasing HI curve; for the repetition propensity,
conversely, an inverted U shape of the HD curve which crosses
an increasing HI curve (Figure 9, results from the tSample + Max
and ParticleFilter + Sampling models are not shown, but the
corresponding curves are similar).

The tSample and ParticleFilter strategies have one or two
parameters, depending on whether they include motor noise or
not. Other models, including all models with a deterministic
inference step, have an error at least 30% higher than the best
five models (and 2.45 times higher than the best model), despite
the fact that other strategies come with up to five parameters
(Table 1). The best-fitting model is ParticleFilter + NoisyMax
with Np = 9 particles. The fitted standard deviation, c,,, of the
Gaussian motor noise is approximately equal to .77 pixels; as a
consequence, in about half of the trials, the noise component is
within the width of a pixel, and thus has no impact. The second

Table 1
Model Fitting Favors the ParticleFilter Inference Strategy With
NoisyMax Response Selection

Stochastic

Deterministic

. 5
Inference strategy X@
—>

Selection strategy ¢

Max| 22

Det.

Noisy
Max

Sampling

Stochastic

Noisy
Sampling

Note. Ratios of the normalized mean squared error (NMSE) in each
model to that of the best-fitting model, ParticleFilter + NoisyMax. Each
model is a combination of an inference strategy (columns) with a response-
selection strategy (rows). The second best model, also a ParticleFilter but
with a NoisySampling response-selection strategy, yields an NMSE 46%
higher than the best-fitting model.

best model also follows a ParticleFilter inference strategy, with
Np = 14, combined with a NoisySampling response selection
(with 6, = .70 pixels).

The third and fourth best-fitting models use the tSample
inference strategy, with N; = 1, and the NoisyMax (with c,, =
.45 pixels, for the third one) and the Max (for the fourth one)
selection strategies. At any given trial, these two models retain
only a single assumption, t,, on the run-length. Upon receiving
a new stimulus, x,;, a model subject computes pchange =
Pir1(t =0Jxy;4q) and 1 - Pehange = Pr+1(T = T, + 1[x1:410),
and decides whether there was a change-point by sampling
this simple, Bernoulli distribution. This sampling process, over
a marginalization of the posterior, is similar to that in the particle
filter model, which samples over the full (s,t)-dependent poste-
rior. As a consequence of sampling, the tSample strategy also
exhibits variability, which behaves in a fashion similar to the
variability in the ParticleFilter strategy (Figure 9, bottom right).
As for response selection, we note that with the Sampling and
NoisySampling selection strategies (instead of the Max and
NoisyMax strategies), these models do not perform as well,
and result in errors larger by 86% (Sampling vs. Max) and
96% (NoisySampling vs. NoisyMax). In fact, for all the seven
inference models, the NoisyMax response-selection strategy re-
sults in errors lower or equal (but more often, lower) than the
other three selection strategies (Max, Sampling, and NoisySam-
pling; Table 1). This suggests that the variability in human
responses does not originate from a posterior-sampling strategy
in the response-selection step, but, rather, from an intrinsically
stochastic inference process. In order to seek further validation of
this finding, we explore, below, a generalization of the Sampling
strategy.

Robustness of the Results

To substantiate the picture that emerges from the results
summarized above, we perform two supplementary analyses.
First, we investigate whether a generalized Sampling strategy
yields smaller errors than the NoisyMax strategy. Second,
we consider our choice of fitting-performance measure (the
average of the NMSEs in the three quantities we examine),
and we check for the robustness of model fitting to changes in
the relative weights of each quantity in the fitting performance
measure.

Sampling from the posterior function is only one of many
possible sampling strategies for response selection. Further-
more, in practice sampling may be difficult to tease apart
from maximizing a perturbed posterior function. Acerbi et al.
(2014) argue that, for some forms of random perturbations of a
posterior probability density, maximizing the randomly per-
turbed function yields similar results to sampling from a modi-
fied posterior density function obtained as a power of the correct
posterior: p(s) o p(s|x;.)*. To establish the equivalence, the
exponent, k, is chosen as inversely related to the magnitude
of the perturbing noise. Sampling from the modified posterior
yields a behavior that interpolates between posterior sampling
(for x = 1) and maximizing (for k — o0); it yields a family of
softmax operations over the posterior (Vul, 2011; Yu & Huang,
2014). Another interpretation of this sampling strategy
is proposed by Battaglia et al. (2011): In the case of an integer
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Figure 9
Behavior of the Three Best-Fitting Models
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Note. In HI (blue curves) and HD (yellow curves) conditions, average learning rate (first column), repetition propensity (second
column), and standard deviation of responses (third column), as a function of run-length, for the subjects (solid lines) and the three best-
fitting models (dashed lines): ParticleFilter + NoisyMax (first row), ParticleFilter + NoisySampling (second row), and tSample +

NoisyMax (third row).

and a Gaussian posterior, the mean of ¥ samples drawn from the
posterior is a Gaussian random variable, with a standard deviation
equal to that of the posterior scaled by 1/+/x; that is, a distribution
equal to the posterior raised to the power k, and normalized. Hence,
in the Gaussian case, sampling from the exponentiated posterior can
be interpreted as drawing k samples from the unexponentiated
posterior, and taking the mean.

We implement this strategy of response selection by sampling a
modified posterior, which we denote kSampling. We find that it
performs better than the Sampling strategy, as expected since the
Sampling strategy is a special case of the kSampling (with the
parameter, x, set to unity). However, in the case of all seven
inference models, the kSampling strategy, which has one free
parameter, performs worse than the NoisyMax strategy, which
has, also, a single parameter (Figure 10A). Hence, a random,
additive perturbation of the maximization strategy remains a

better account of human behavior than a posterior-sampling
strategy.

Our results, which suggest that the variability in the responses of
subjects originate in the inference step rather than in the response-
selection step, rely upon the fitting performance measure used for
model comparison. We chose a measure that weighted equally the
three NMSEs (on the learning rate, repetition propensity, and
standard deviation), so as to obtain a model performing well on
all fronts, but that choice was arbitrary. Hence, one may be con-
cerned, for instance, that the goodness-of-fit of the ParticleFilter
model be due to our choice of weighing errors. As a control, we
computed the three “two-measure errors,” each excluding one of the
three measures and averaging the errors in the two remaining ones.
We found that, regardless of the choice of the combination, the
relative order of the models in terms of performance stays identical,
with only a few exceptions. Most importantly, the ParticleFilter
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Figure 10
Model Fitting is Robust to the Measure Used for Model Comparison
(A) Three-measure Error (B) Two-measure Error
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Note. Normalized mean squared error of fitted models. (A) NMSE of models fitted to subjects data, averaged over the three
measures (learning rate, repetition propensity, and standard deviation of responses), grouped by inference models. (B) NMSE
between fitted models and subjects data, averaged over two out of the three measures.

remains, in all three cases of error combinations, the best-fitting
model (Figure 10B).

Bayesian Model Selection Also Favors Sample-Based
Inference

Another concern regarding the choice of the NMSE as our
performance measure for model comparison is that it does not
take into account the number of parameters in the models. A
standard method to fit and compare models is to maximize the
log-likelihood of each model and compute its Bayesian Information
Criterion (BIC), which includes a penalty as a function of the
number of parameters in the model (Schwarz, 1978). In several
of our models (and in many models in the literature), the responses
in successive trials, conditioned on the stimuli presented to the
subject, are independent; as a result, the log-likelihood over all trials
is the sum of the log-likelihoods for each trial, taken separately. This
obtains for all the models in which the inference strategy is
deterministic (Optimallnference, IncorrectQ, tMean, TNodes, and
tMaxProb). It does not apply, however, for the models with
stochastic inference strategies (tSample and ParticleFilter): In these
models, successive responses, conditional on observed stimuli, are
not independent as they depend on the realization of the stochastic
process that governs inference. To compute the BIC, it is therefore
necessary to compute, first, the distribution of the possible realiza-
tions of the stochastic inference process. The difficulty, here, lies in
the fact that the space of these realizations grows exponentially with
the number of trials in an experimental run.

In the context of our task, in which the subjects undergo 1,000
trials in a run, an exact computation of the BIC is prohibitive. In
order to circumvent this problem, we propose to approximate the
log-likelihood of a model by way of a Monte Carlo estimation of the
log-likelihoods of short sequences of responses. This approach
limits the computational load of the estimation while taking into
account the sequential dependence of responses. We report, here, the
results of this estimation scheme using short sequences of 10

successive trials, but in our investigations we repeated the calcula-
tions for different choices, which yielded comparable results. We
detail the procedure in Method section. Here, we mention that even
though models with temporal correlation such as the particle filter
have been used to capture cognitive processes, to the best of our
knowledge Bayesian model selection using the BIC has not been
applied to them, except in the case of a binary categorization task
(Lloyd et al., 2019). The approximate approach we propose may
thus be of use beyond the confines of the specifics of our problem.

In the models that do not feature a (Gaussian) motor noise, some
responses of the subjects have a vanishing probability, and thus
these models have an infinite BIC. Hence, we look at the BICs of
the models equipped with the Noisy or the NoisySampling
response-selection strategy. We find that the three best-fitting
models involve a stochastic approximation of the Bayesian infer-
ence: the two best-fitting models make use of the ParticleFilter
inference strategy and the third best-fitting model has a tSample
inference strategy (Figure 11). We note that with the NMSE metric
the three best-fitting models were also the two ParticleFilter
models followed by a tSample model. Thus, both model-fitting
approaches suggest that human inference evolves according to a
stochastic compression of the posterior. The best-fitting model is
ParticleFilter + NoisySampling, with Np = 8 particles, and its
BIC is smaller than that of the second best-fitting model, the
ParticleFilter + NoisyMax model with Np = 4 particles, by 2,816.
This result is consistent with the best-fitting numbers of particles
obtained when minimizing the NMSE, which were also relatively
modest, although slightly larger (Np = 14 with NoisySampling and
Np = 9 with NoisyMax).

Taken together, our results suggest that variability in human
behavior, at least in the context of our task, is dictated primarily by
stochasticity in the inference step—that is, in the manipulation and
update of probabilities—rather than by “output noise” such as
stochasticity in the response-selection step or motor noise. This
view agrees with the conclusion of a recent study of a cue combi-
nation task (Drugowitsch et al., 2016); its authors argue that a



and is not to be disseminated broadly.

erican Psychological Association or one of its allied publishers.

ghted by the Am

article is intended solely for the personal use of the individual user

This document is copyri

This

16 PRAT-CARRABIN ET AL.

Figure 11
Bayesian Model Selection Favors the ParticleFilter Inference
Strategy
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Note. Difference between the BIC of each model and that of the best-
fitting model, for the models combining one of the seven inference
strategies with the NoisyMax or the NoisySampling response-selection
strategies. The two best-fitting models make use of the ParticleFilter
inference strategy.

“dominant fraction” of human choice suboptimality arises from
random fluctuations in the inference step.

Discussion
Summary

This study investigates the behavior of human subjects in an
online inference task and examines mechanisms that can account for
behavioral trends found in experimental data. An important aspect
of this task is that it makes use of both a history-independent (HI)
condition with no temporal structure, and a history-dependent (HD)
condition in which a hidden state is almost periodical and, hence,
highly structured in time (Figure 1D). We find that subjects display
different behaviors in the two conditions, adapting their learning rate
to the temporal structure of the hidden state. We also note a
propensity in subjects to repeat their response in consecutive trials;
this repetition propensity increases with the run-length, and in the
HD condition drops again for larger run-lengths. Moreover, we
observe that subjects exhibit a greater variability in their responses
shortly after a change point, in both conditions, and at long run-
lengths in the HD condition, that is, the variability in behavior also
depends on the temporal statistics of the stimuli.

The distinctive behaviors of the learning rate and the repetition
propensity in the HI and HD conditions are reproduced qualitatively
by a Bayesian model of inference which yields optimal updates of
the probability density of the hidden state. As for the variability in
subjects’ responses, we find that its behavior is similar to that of the
standard deviation of the Bayesian posterior. We therefore use the
Bayesian model as a starting point to elaborate variant models that
can account for the trends exhibited in human responses. We find
that the variability in human behavior, and its dynamics, can be
reproduced by suboptimal models in which inference is executed in

a stochastic manner. Specifically, the tSample and the ParticleFilter
models alter the optimal inference step by maintaining an approxi-
mate version of the posterior, by means of random sampling. This
alteration of the optimal model at once introduces variability in the
behavior and relieves the memory capacity, through sampling either
in the “time dimension” (in the TSample model) or in the “time and
space dimensions” (in the ParticleFilter model).

The behavioral patterns that arise in our task in the HI condition
are also found in other experiments. Gallistel et al. (2014) and Khaw
et al. (2017) both conducted an online inference task, with change
points that occurred with constant probability (similarly to our HI
condition). We examined the responses of their subjects in the
context of the respective tasks, and we observed very similar
behavioral trends: The learning rate decreases as a function of
the run-length, while the repetition propensity increases. As for
the empirical standard deviation of subjects’ responses, we note that
in these studies some subjects were presented several times with the
same sequence of stimuli, in different sessions, thus allowing for the
examination of the variability of responses within subjects. We find,
here also, that the within-subject standard deviation of responses
shows the same modulations as the standard deviation of the
Bayesian posterior (Supplemental Figure BS).

Temporal Structures in Nature and Their Behavioral
and Neural Counterparts

In order to make appropriate decisions in relation to their
environment, humans and animals must infer the state of the
surrounding world on the basis of the sensory signals they receive.
If these signals are noisy and if the environment is changing, their
inference task is complicated by the fact that a new stimulus may
reflect either noise or a change in the underlying state. However, if
events in the world present some kind of temporal structure, such as
in our HD signal, it is possible to use this structure to refine one’s
inference. Conversely, if events follow a Poisson process, as in the
HI signal, their occurrences present no particular temporal structure,
and what just happened conveys no information on what is likely to
happen next. Hence, there is a fundamental difference between the
HI and HD conditions, which impacts the inference of an optimal
observer.

Many natural events are not Poisson-distributed in time, and
exhibit strong regularities. Nunes Amaral et al. (2004), Nakamura
et al. (2007, 2008), and Anteneodo and Chialvo (2009) have
recorded the motor activity of both rodents and human subjects
over the course of several days. In both species, they found that the
time intervals between motion events were distributed as a power
law, a distribution characterized by a long tail, leading to bursts, or
clusters, of events followed by long waiting epochs. The durations
of motion episodes also exhibited heavy tails. These kinds of
distribution are incompatible with Poisson processes, which yield
exponentially distributed inter-event epochs. Moreover, both rodent
and human activity exhibited long-range autocorrelations, another
feature that cannot be explained by a Poisson process. A particular
form of autocorrelation is periodicity, which occurs in a wide range
of phenomena. In the context of human motor behavior, walking is a
highly rhythmical natural activity (Griffin et al., 2000; Hausdorff
et al., 1995). More complex patterns exist (neither clustered nor
periodic), such as in human speech which presents a variety of
temporal structures, whether at the level of syllables, stresses, or
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pauses (Campione & Véronis 2002; Low et al., 2000; Ramus et al.,
1999). In all these examples, natural mechanisms produce series of
temporally structured events. The ubiquity of history-dependent
statistics of events in nature begs for explorations of inference
mechanisms in their presence. For the purposes of our experiment,
we chose an idealized temporal signal that combined several
advantages: It featured a prominent form of history dependence,
approximate periodicity; it was not easily distinguishable from the
other, history-independent signal used in the task; and it was
amenable to modeling.

In the case of studies of perception and decision-making, in both
humans and animals, history-dependent signals have been used
widely. In a number of experiments (Ghose & Maunsell, 2002;
Janssen & Shadlen, 2005; Jazayeri & Shadlen, 2010; Li & Dudman,
2013; Miyazaki et al., 2005), a first event (a sensory cue, or a motor
action such as a lever press) is followed by a second event, such as
the delivery of a reward, or a “go” signal triggering the next
behavior. The time elapsed between these two events—the “reward
delay” or the “waiting time”—is randomized and sampled from
distributions that, depending on the studies, vary in mean, variance,
or shape. For instance, both Janssen and Shadlen (2005) and Ghose
and Maunsell (2002) use unimodal and bimodal temporal distribu-
tions. Because of the stochasticity of the waiting time, the probabil-
ity of occurrence of the second event varies with time, similarly to
the probability of a change point in our HD condition; these studies
explore whether variations of this probability are used by human and
animal subjects. Janssen and Shadlen’s (2005) recordings from the
V4 cortical area in rhesus monkey indicate that, for both unimodal
and bimodal waiting times distributions, the attentional modulation
of sensory neurons varies consistently with the event probability.
Ghose and Maunsell (2002) note that the reaction times of macaques
are inversely related to the event probability, for both unimodal and
bimodal distributions, and that the activity of neurons in the lateral
intraparietal (LIP) area is correlated with the evolution of this
probability over time. Li and Dudman (2013) manipulate another
aspect of the distribution of reward delays: Between blocks of trials,
the standard deviation of this distribution is varied, while the mean is
left unchanged. Mice, in this situation, are shown to adapt their
waiting times to this variability of reward delays, consistently with a
probabilistic inference model of reward timing.

Akin to the tasks just outlined are “ready-set-go time-
reproduction tasks,” in which subjects are asked to estimate the
random time interval between “ready” and “set” cues, and to
reproduce it immediately afterward. Miyazaki et al. (2005) and
Jazayeri and Shadlen (2010) show that human subjects combine
optimally the cue (consisting in the perceived ready-set interval)
with their prior on the interval length. Different priors are learned in
training runs: They differ by the variances of the interval distribu-
tions (Miyazaki et al., 2005) or by their means (Jazayeri & Shadlen,
2010). In both cases, subjects integrate the prior in a fashion
consistent with Bayesian inference. Adopting a different approach,
ten Oever et al. (2014) show that attentional resources can be
dynamically allocated to points in time at which input is expected:
when asked to detect auditory stimuli (beeps) of low intensity
embedded in a continuous white noise, human subjects perform
better when detecting periodic beeps rather than random beeps,
suggesting that they are able to identify the temporal regularity and
use it in their detection process.

In all these studies, the event of interest has a probability of
occurrence that varies with time. The resulting temporal structure in
the signal appears to be captured by human and animal subjects, and
reflected in behavior and in its neural correlate. Various probability
distributions used in the reported tasks can be compared directly to
our HD sigmoid-shaped change probability, with adjusted parame-
ters. In line with these studies, our results confirm that human
subjects adapt their behavior depending on the temporal structure of
stimuli. Additionally, we provide a comparison between two dif-
ferent conditions, a HD condition akin to a “jittered periodic”
process, and the Poisson, HI condition; the latter produces a
memoryless process. Importantly, it plays the role of a benchmark
from the point of view of probability theory: In discrete time it yields
a geometric distribution, and in continuous time it yields an
exponential distribution; both distributions maximize the entropy,
subject to the constraint of a fixed event rate. In this study, we
compared a specific, temporally structured HD condition to this
benchmark, HI condition.

Online Bayesian Inference

Our first observation is that the average learning rate of subjects
and their repetition propensity are captured by a Bayesian model.
The Bayesian paradigm has been viewed as an extension of logic
that enables reasoning with propositions whose truth or falsity is
uncertain (Cox, 1946; Jaynes, 2003). In cognitive science, it has
successfully accounted for a wide range of observations, including
cue combination in humans (Battaglia et al., 2003, 2011; Ernst &
Banks, 2002; Hillis et al., 2004; Jacobs, 1999; Knill, 2003, 2007;
van Beers et al., 1999), sensorimotor control (Berniker & Kording,
2011; Kording & Wolpert, 2004, 2006), integration of temporal
statistics (Ghose & Maunsell, 2002; Janssen & Shadlen, 2005;
Jazayeri & Shadlen, 2010; Li & Dudman, 2013; Miyazaki et al.,
2005), perceptual multistability (Gershman et al., 2012; Moreno-
Bote et al., 2011; Sundareswara & Schrater, 2008), and various
aspects of cognition (Blaisdell et al., 2006; Goodman et al., 2008;
Griffiths & Tenenbaum, 2006, 2011; Stocker & Simoncelli, 2008).

The literature on Bayesian online inference in cognition, where
belief is updated iteratively as a function of incoming information, is
growing; examples can be found in word segmentation (Pearl et al.,
2011), sentence processing (Levy et al., 2008), conditioning (Daw &
Courville, 2008), as well as in the change-point literature (Gallistel
et al., 2014; Glaze et al., 2015, 2018; Khaw et al., 2017; Nassaret al.,
2010; Piet et al., 2018; Wilson et al., 2010, 2013). In change-point
tasks, subjects are presented with a long sequence of consecutive
inference problems (1,000 of them, in our case). Each trial is a
slightly different task, in which one has to handle the uncertainty
resulting from the belief distribution, from the signal likelihood,
and from the possibility of a change point. The latter, in the HD
condition, bears the added complexity of a change-point probabil-
ity, g(t), that depends on the time of the last change point. How
these uncertainties are handled determines the behavior, and in
particular to what extent an observer reacts to a new stimulus:
Either shift the estimate toward it, or not move at all. We quantify
this response through the learning rate and the repetition propensity,
and we find that the ideal Bayesian observer and the subjects obey
similar trends (Figure 5A, B).

The success of the Bayesian paradigm, however, is limited, and
comes with three shortcomings. First, subjects do not behave
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quantitatively like the ideal Bayesian observer, and hence there
remains unexplained suboptimality. Second, we find variability in
the responses of subjects (Figure 5C), an observation incompatible
with optimal Bayesian inference. Third, inference problems in the
real world are complex and high-dimensional, rendering Bayesian
reasoning computationally heavy and memory-intensive. This sug-
gests that humans use approximations when carrying out inference
and estimation tasks (Gershman et al., 2015; Gershman & Beck,
2016; Sanborn & Chater, 2016). These three observations call for
the investigation of alternatives to the optimal Bayesian paradigm.
Our study explores several scenarios.

Sampling Versus Noisy Maximization

Although the behavior of the subjects and of the Bayesian model
differ in that the former exhibits variability while the latter is
deterministic, the temporal modulation of the human variability
follows a similar course to that of the standard deviation of the
Bayesian posterior (Figure 5C), and both the standard deviation and
the skewness of the distribution of subjects’ responses are correlated
with those of the Bayesian posterior (Figure 6). Therefore, it is
natural to propose that response selection operates by sampling the
Bayesian posterior instead of maximizing the expected score.
Decision by posterior sampling, or “probability matching,” has
been suggested by other decision-making experiments (Denison
et al., 2013; Herrnstein, 1961; Koehler & James, 2009) and, more
recently, perceptual experiments (Battaglia et al., 2011; Moreno-
Bote et al., 2011; Wozny et al., 2010). Although close to optimal in
some specific paradigms (Kaufmann et al., 2012), sampling is
suboptimal in the context of our behavioral task. When fitting
models to human data, we observe that the ParticleFilter + Sam-
pling and the ParticleFilter + NoisySampling models yield larger
NMSE than the ParticleFilter + NoisyMax model (the best-fitting
model), by 90% and 48%, respectively. More generally, we observe
that for each of our seven inference strategies, the NoisyMax
response-selection strategy results in better fits (lower NMSE)
than the Sampling and the NoisySampling strategies (Figure 10A).
Relaxing the Sampling model by allowing the posterior to be
exponentiated before sampling, as in the xSampling strategy,
does not yield better fits than the NoisyMax strategy either. We
conclude that posterior sampling accounts less successfully for our
data than a simple perturbation of the optimal maximization strategy
by an additive, fixed-width, Gaussian noise.

Alternative Models of Response Selection: “Rational
Inattention” and ad hoc Repetition Probability

Aside from posterior sampling and motor noise, the so-called
“rational inattention” approach which has been gaining grounds in
economics (Sims, 2003, 2011; Woodford, 2009) suggests a different
account of the variability of responses in decision-making tasks. In
complement to the study of Bayesian and approximate Bayesian
models, we have examined models inspired by that approach. We
summarize here, our results, and provide a more detailed discussion in
Method section. Rational-inattention models posit the existence of a
cognitive cost which prevents subjects from making optimal decisions.
In a standard formulation of the approach, this cost is assumed to be
proportional to the mutual information between a subject’s mental
representation (of quantities relevant to produce responses) and the

external variables relevant to the decision (here, the sequence of
presented stimuli). The subject optimizes the “information structure,”
that is, the distribution of the mental representation conditional on the
observed stimuli, under the cognitive cost. The optimal distribution of
responses depends on both the (prior) distribution of stimuli and the
form of the reward function. We implement this model and compute its
BIC (see Method section for details). We find that it is much larger
(by 29,656) than the BIC of the Optimallnference + NoisyMax model,
which itself has a larger BIC than most of our other models
(Figure 11). Hence, a direct application of a rational inattention
approach does not provide a better account of behavioral data than
the addition of a Gaussian noise in response selection following
optimal inference.

Faced with a similar issue, Khaw et al. (2017) introduced a
variant of the rational-inattention model that is particularly relevant
to our study, as it applies to a sequential inference task with (history-
independent) change points. In this variant, the response selection is
split into a two-stage decision process: First, the subject decides
whether to repeat the previous response; second, only if the decision
is made not to repeat, then the subject chooses the location of a new
response; and both decision stages are subject to cognitive costs.
This presents a difference with the models that we have analyzed so
far, in that an ad hoc probability of repetition is included explicitly in
the model, whereas our approach, instead, was to study deviations
from optimality that resulted from deterministic or stochastic ap-
proximations of a Bayesian scheme.

We have analyzed our data using a model similar to the one
proposed by Khaw et al. (2017). In order to evaluate the relevance of
a rational-inattention information structure, we have also studied a
model that includes a two-stage decision process, but does not
involve cognitive costs. Specifically, this model combines the
Optimallnference strategy with a strategy of response selection in
which at each trial the model subject chooses, with fixed probability,
whether to repeat the previous response. The probability of a
repetition is constant, in this last model, whereas in the rational-
inattention model it depends on the stimulus history and on the
location of the slider at the beginning of the trial.

These two models yield a BIC lower than that of our previously
best-fitting model, suggesting that a two-stage response-selection
process is worth considering as a candidate mechanism for sequen-
tial decision-making. The previously best-fitting model, however,
makes use of the ParticleFilter inference strategy, whereas the
models just presented rely on the Optimallnference strategy. Hence,
we implement an array of models that combine the same two-stage
response-selection processes with, instead, the ParticleFilter infer-
ence strategy. With this inference strategy, the model in which the
subject chooses whether to repeat with a fixed repetition probability
results in a lower BIC (by 1,398) than the model in which the
repetition probability is governed by a rational-inattention cognitive
cost. Moreover, as in the other analyses conducted above, the
models with a ParticleFilter inference strategy all yield substan-
tially lower BICs than their counterparts that make use of the
Optimallnference strategy. It appears, thus, that while the intro-
duction of an explicit repetition probability in models improves
their explanatory power, deriving this repetition probability from
a simple form of cognitive cost does not provide a better account
of behavioral data than positing a fixed repetition probability.

An explicit repetition probability alone is insufficient to capture
human inference in our task. Instead, stochastic compression of
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beliefs, as illustrated by stochastic pruning or particle filtering,
results in a closer match with experimental observations. (We provide
details on the rational-inattention models, the fixed-repetition-
probability models, and their BICs in Method section.)

Memory Load and Stochastic Pruning During Inference

After rejecting the rational inattention and the sampling hypoth-
eses for response selection, we are left with an unexplained modu-
lation of the variability—specifically, the relation between the
magnitude of behavioral variability and the width of the Bayesian
posterior at successive times (Figure 4C). Noisy maximization,
which makes use of an additive random perturbation with fixed
variance, leads to behavioral variability with constant variance; it is
thus insufficient to explain the experimental observations. If
modulated variability does not originate in the response-selection
step, it must derive from the inference step. Out of the 28 models
we consider the five best-fitting models implement either the
ParticleFilter or the tSample inference strategy, both of which
rely on sampling during inference. These strategies capture the
trends in the variability of human responses, in both HI and HD
conditions (Figure 9).

Both these inference strategies reduce the memory load in the
inference problem by stochastically trimming the posterior, in a
fashion akin to the “pruning” model proposed by Huys et al. (2012)
in the context of a decision-tree task. In their decision model, the
evaluation of a possible sequence of decisions is more likely to be
curtailed (thus alleviating the dimensionality of the problem) if it
appears to have a low value. Similarly, the ParticleFilter and the
tSample inference strategies ignore with a higher probability possi-
ble run-lengths and states that are less likely to be correct. Further-
more, we note that the tMaxProb inference strategy also relies on
pruning unlikely run-lengths, but it deterministically eliminates the
most unlikely, in contrast to its stochastic counterpart, TSample—
which yields a better fit of the data. In explore—exploit problems,
“Thompson sampling” (Thompson, 1933) refers to a strategy in
which one “explores” by randomly choosing an action with the
probability that this action maximizes the reward (instead of deter-
ministically choosing the action most likely to maximize the
reward). Several studies have reported that the responses of human
subjects in explore—exploit tasks appeared consistent with Thomp-
son sampling (Gershman, 2018; Schulz et al., 2015; Speekenbrink
& Konstantinidis, 2015). In this perspective, the stochastic pruning
of the posterior in our best-fitting models appears as an exploration
strategy, deployed during inference. Beyond the specifics of the
pruning or exploration mechanisms, the main conceptual point,
here, is that behavioral biases may result from an approximation to a
Bayesian scheme that relieves memory load. A similar picture has
been advanced in the context of prediction tasks, where “over-
reaction”—effectively a biased, enhanced learning rate—results
from the compression of information stored in memory (Afrouzi
et al., 2020; Azeredo da Silveira & Woodford, 2019; Neligh, 2019).

Aside from stochasticity in the inference step and in the response-
selection step, noise in the sensory observation is a possible alternate
account of behavioral variability, discussed, among others, by Stocker
and Simoncelli (2006) and Drugowitsch et al. (2016). The design of
our experiment, however, minimized perceptual ambiguity: The
stimulus we presented to the subject at each trial, in our task, was
a white dot that clearly contrasted with the background, and which

remained on the screen until the subject responded (the subject was
thus free to look at it for as long as he or she wished). By contrast, in
the two studies just mentioned, the stimuli consisted of low-contrast
gratings presented for one second or less. We presume that our
experimental design limited perceptual noise.

It would nevertheless be interesting to know whether and how
perceptual noise may contribute to behavioral variability in a
sequential experiment, and how it may couple with stochasticity
in inference. A possibility is that the magnitude of perceptual noise
is constant throughout the task, in which case it would be expected
to contribute an equal amount of variability at all run-lengths; if so, it
would not account for the modulations of variability that we record
in our task. Another possibility is that perceptual noise itself adapts
dynamically during the task. Under this hypothesis, we speculate
that the magnitude of perceptual noise would decrease if uncertainty
increases; if so, it would result in an effect on behavioral variability
opposite to the observed effect. Although we cannot exclude that an
effect of this nature is at play, it does not appear to offset completely
the modulations of the variability which can be understood in terms
of an approximate Bayesian inference. In sum, in the present setting
of the experiments, a natural explanation of the behavioral variabil-
ity in terms of perceptual ambiguity seems unlikely.

Incorrect Belief About the Temporal Statistics of the
Signal

Comparing the behaviors of the best-fitting model and that of the
subjects, we note that there remain discrepancies between the two,
particularly at long run-lengths in the HD condition. The increase in
the subjects’ learning rate, and the reduction in their repetition
propensity, at these run-lengths and in this condition, are not as
sharp as those of the best-fitting model (Figure 9). A candidate
explanation of these deviations is that the subjects hold an inexact
belief on the shape of the change probability, g(t), as a function of
the run-length. The analysis of the IncorrectQ inference strategy, in
Method section, examines the case of a model subject who believes
that the change probability increases more slowly (A < 1) than it
actually does and that the average interval length is greater (7 > 10)
than it actually is in our task. The learning rate of this model subject
does not increase as abruptly, and the repetition propensity does not
decrease as quickly, as those of the best-fitting model, similarly to
the behavior of actual subjects (Figure 12, middle panels). More-
over, among the five deterministic inference strategies considered,
IncorrectQ is the best-fitting strategy, regardless of the response-
selection it is combined with, and with both model-comparison
measures—NMSE (Table 1) and BIC (Figure 11). This suggests
that, aside from the stochastic compression of the posterior, the
subjects’ deviations from optimality may also result, to some extent,
from an incorrect belief in the temporal structure of the signal.

Inference Through Sample-Based Representations of
Probability

The ParticleFilter strategy is noteworthy in a number of respects.
First, it is our best-fitting model. Second, it constitutes a generic
approach to inference; it was reported to account successfully for
other inference and learning behaviors, such as category learning
(Sanborn et al., 2006, 2010), conditioning in pigeons (Daw &
Courville, 2008), sentence processing (Levy et al., 2008), hidden
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state inference (Brown & Steyvers, 2009), and visual tracking of
multiple objects (Vul et al., 2009). Third, out of all the models we
consider, it is by far the less demanding on memory: With nine
particles, one needs to store 27 numbers (for s, T, and the weight of
each particle) in memory. As a comparison, the optimal model stores
a discretized probability distribution over the (s, T) space, which
amounts to about 16000 numbers (the optimal posterior could be
well approximated with less memory-intensive methods, but this
would require further hypotheses.) Previous uses of particle-filter
methods in the context of a variety of cognitive tasks yielded best-
fitting numbers of particles which ranged from one to several
hundreds: from one to 400 particles, with a mean of 56, in
Brown and Steyvers (2009); 130 particles (but 70 when subjects
simultaneously perform a distractor task) in Thaker et al. (2017);
around 20 particles in Levy et al. (2008); 20 particles in Glaze et al.
(2018); and as few as one particle in Daw and Courville (2008) and
Sanborn et al. (2010). In addition, Bramley et al. (2017) consider
only the case of a single particle. We note that our analysis of the
ParticleFilter inference strategy, detailed in Method section,
reveals that a model with just one particle fails to reproduce
the decreasing learning rates, in the HI condition, and the smile
shape of the learning rates, in the HD condition, while models
with two or more particles do capture these behavioral trends
(Figure 15B). Hence, in contrast to the last three studies cited, we
find that a particle-filter model with a single particle is qualita-
tively inconsistent with the behavior of human subjects, at least in
the context of our task.

A fourth aspect of particle filters is that they provide a natural
interpretation of the high repetition propensity observed in sub-
jects (Figure 5B). As the support of the probability distribution is
reduced to Np = 9 points on the (s, T) plane, there is a fair chance
that the posterior-maximizing particle at trial #, (s;, T,), remains the
posterior-maximizing particle at trial # + 1. Hence, the response
s, is likely to be repeated. In a similar spirit, particle filters have
been shown to account for order effects in category learning
(Sanborn et al., 2010) and observations about online sentence
comprehension (such as the processing of “garden-path sentences”
(Levy et al., 2008)).

The success of particle filters, also known as Sequential Monte-
Carlo method, in accounting for human behavior in an online
inference task adds to a growing literature on sample-based repre-
sentations in cognitive processes (Gershman et al., 2012; Goodman
et al., 2008; Moreno-Bote et al., 2011; Vul et al., 2014). Monte-
Carlo methods, which approximate probability distributions with
sets of samples, constitute a major element of a family of techniques
used in machine learning to address a wide range of problems
(inference, optimization, numerical integration, etc.); they have also
been put forth as candidate cognitive algorithms (Gershman & Beck,
2016; Sanborn, 2017). Moreover, they account for a range of
cognitive biases in the laboratory, such as base-rate neglect, con-
junction fallacy, and the unpacking effect, as well as for human
performance in complex, real-world tasks, and specific observations
such as response variability and autocorrelation in perception and
reasoning tasks (Gershman et al., 2012; Sanborn & Chater, 2016).
At the implementation level, sample-based representations are well
suited to learning in neural networks (Fiser et al., 2010). Here, the
variability in neural activity can be interpreted in terms of sampling-
based representations of probability (Buesing et al., 2011; Fiser
et al., 2010; Gershman et al., 2012; Hoyer & Hyviérinen, 2003), and

a number of neural network models performing probability sam-
pling have been proposed (Aitchison & Lengyel, 2016; Hennequin
et al., 2014; Moreno-Bote et al., 2011; Savin & Denéve 2014; Shi &
Griffiths, 2009).

Method
Details of the Behavioral Task

The computer-based task was programmed and run with Psy-
chopy (Peirce, 2009). In this task, white dots appeared on a
horizontal line in the middle of a gray screen. Subjects were told
that these white dots were snowballs thrown by a hidden person, the
“enemy” (also located on the horizontal line). The horizontal
location of a snowball was the stimulus, x,, and the position of
the hidden person was the state, s,. The state space was arbitrarily
chosen to be [0, 300]; this scale did not appear on the screen. By
clicking with a mouse (whose pointer moved on the horizontal axis
only), subjects could indicate where they thought the hidden person
was (i.e., give their estimate, §,, of the state). The time of response
was not constrained. A green dot provided a visual feedback of the
location of the click. After 100 ms, a new white dot appeared,
starting the next trial (Figure 1A, B). If a subject’s “shot” was within
a fixed distance around the state (the radius of the enemy), the
subject was rewarded with 1 point. If the shot was “outside the
enemy”’ but within a distance equal to twice the enemy radius,
the reward was 0.25 point (Figure 1E). Otherwise, the reward was
zero. Subjects were not informed of the reward immediately after
each shot, as this would have provided additional information on the
location of the state. The total score was given every 100 trials, to
allow for an assessment of average self-performance and to foster
motivation.

Subjects

We ran the computer-based task on 30 paid subjects; all gave
informed consent. The study was approved by Princeton Univer-
sity’s Institutional Review Board for Human Subjects. The sample
size was determined so as to be comparable to that used in similar
experiments (Nassar et al., 2010, 2012). Four subjects performed
significantly worse than the other ones: their average error, defined
as the absolute difference between their estimate and the state,
|3, — s,|, was 10.4 (standard deviation [SD]: 0.93), while the average
error of the other 26 subjects was 6.5 (SD: 0.62). Because of this
difference of more than 5 standard deviations, these four subjects
were excluded from the analyses. Hence, a total of 26 subjects were
included in the analyses. Our conclusion remains unchanged if all 30
subjects are included in the analyses (see Supplemental Figure B4).

Details of the Signal

The stimulus, x,, was generated around the state, s,, according
to the likelihood probability, g(x,|s;), which was chosen to be
triangular, centered at s,, and of half-width 20. The state, s,, was
piecewise-constant with respect to time, that is, constant in the
absence of a change point. In the HI condition, the probability of a
change point, ¢g,, was constant and equal to 10%. In the HD
condition, ¢, depended on the run-length, t,, defined as the number
of trials since the last change point, and had a sigmoid shape:
gltr)=1/(1 +e @ 19) At 1,=0 (e, immediately after a
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change point), the probability of another change point was very
small. Six trials after a change point it was still small, less than 2%,
before growing appreciably (50% at t, = 10, 95% at t, = 13). This
led to more regular intervals between change points than in the HI
condition, with a change point roughly every 10 trials (Figure 1C, D).
The average number of trials between two change points in both
conditions was 10. At a change point, the state randomly jumped
to a new state, s,,1, according to the state transition probability,
a(s;41]s;). This distribution was chosen to be bimodal, symmetric,
and centered at s, (two triangles of half-width 20 each, centered at
s, = d, where d = 5, Figure 1E). This prevented new states to be too
close or too far from the previous state, which would have made
change-point detection too difficult or too obvious.

Training Runs

All subjects did the task in both HI and HD conditions. 14 started
with the HD task and 16 started with the HI task (no significant
differences were found in results between these two groups).
Subjects were not told the specificity of each situation. An explana-
tory text indicated that there were ‘“differences” between each
condition but no further indications were given. Each condition
started with a series of explanations and tutorial runs. In a first
tutorial run, the enemy (i.e., the state) was visible and moved
according to the current (HI or HD) condition, and successive
snowballs appeared without any action from the user (as in passive
video viewing). In a second run, the enemy was still visible and
subjects had to click at each trial, after which the next snowball
would appear. This run was a very simple version of the actual task,
because subjects were seeing the state. In a third run, the half-width
of the triangular likelihood, g(x,|s;), was 10, that is, half the value it
took in the actual task. In this run, the state was not visible, except
after a change point: In the occurrence of a change point, the position
of the state before the change point was shown, along with the shots
of the subject since the previous change point. This run had two
goals: first, to emphasize the timing of change points, and second, to
allow for self-performance assessment and to illustrate that a
strategy consisting of “following the white dots,” that is, clicking
on the stimuli, was inefficient. A fourth tutorial run was an “easy”
version of the actual task: the state was always hidden, but the
likelihood, g, had a half-width of 10. A fifth and last tutorial run
reproduced the third run, but with the likelihood, g, with half-width
20. During the task, 15 subjects (7 amongst the HD-first group and 8
amongst the HI-first group) were also shown the positions of past
stimuli, as white dots with decreasing contrast, gradually merging
with the gray background (Figure 1). The other 15 subjects were not
shown past stimuli. No significant differences were found in data
between the two groups. The number of stimuli presented in the
tutorial runs totaled 297 for each condition. During the actual task
there were 1,000 trials in each condition, leading to a total of 2,000
data points per subject.

Empirical Run-Length

As subjects did not know the true run-length, T, we computed an
empirical run-length, 7, based on the responses of subjects. Whereas
the true run-length is defined as the number of trials since the last
change point, the empirical run-length is defined as the number of
trials since the last “large correction”; a large correction is defined as

a correction with an absolute value larger than the 90th percentile of
corrections. This percentile level is chosen in relation to the average
frequency of change points, 1 for every 10 trials, in both HI and HD
conditions. In some occasions, a subject “misses” a change point:
The run-length and the empirical run-length, consequently, differ.
For instance, T = 10, while T = 0 or 1. In such a case, because the
change point did occur, the subject experiences a large surprise and
is thus likely to subsequently opt for a large correction, that is, to
increase the learning rate. In the HD condition, because of the
temporal statistics of change points, this situation is more likely to
occur at empirical run-lengths around 10. Hence, this effect could
bias the learning rates to higher values at these empirical run-
lengths, in this condition. This effect, however, does not originate
in the inference process, but rather in the temporal statistics of the
HD signal. In other words, even an observer whose inference
algorithm is not adapted to the HD condition would have higher
learning rates at empirical run-lengths around 10. In the results
presented, we removed all trials with a (true) run-length of 0 or 1, in
order to avoid this artifact.

Regression of the Learning Rate on Run-Lengths

In order to provide statistical evidence of the smile shape of the
learning rates in the HD condition (and the absence of a smile shape
in the HI condition), we regress the learning rate on the run-lengths,
with a quadratic term. For the HD condition, we find that the
coefficient for the quadratic term is positive and significantly
different from zero (.0046; p value = le-11). For the HI condition,
this coefficient is smaller and we cannot reject at a significance level
of 5% the null hypothesis that it is zero (.0013; p value = .068).
Moreover, the difference between the two quadratic coefficients is
statistically significant (F-test p-value = 5.7e-4). The coefficient for
the linear term is significantly negative (p-value < le-2).

Bayesian Update Equation

We derive the Bayesian update equation for a general case with
q = q(s, T, pClss, ©) = gxls, T, and p(spaltir = 0, s, T) =
a(s,41]s, T,), which includes the case used in our task with ¢ = g(t,),
8= g(x,|s,), and a = a(SrJrllst)-

Our goal is to obtain an update rule for the posterior, p(s, t|x;.,)
upon the observation of a new stimulus, x,,;. Bayes’ rule yields

1

Prat (8, Ty ) = Z—g(xt+l IS, TP (55 i), G}
t+1
where Z,,; = pu1(Xi41]x1.,) is a normalization constant. The third

term in this product can be written as

P (s, Thri) = EJPtJrl(Sv TIse TP (50 Tlxi)ds, (5)

K S

The transition probability, p,, (s, t|s,, T,), is determined by ¢ and
a. An absence of change point occurs with probability 1 — g(s,, Ty),
and in such a case a state (s;, T,) evolves into the state (s, = s;,
7,41 = T+1). In the case of a change point, an event that occurs
with probability ¢(s;t,), possible states at ¢ + 1 have the form
(8/+1,Tr+1 = 0). Hence the transition probability from (s, T,) to (s, T)
att + 1 is given by
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Pis1 (8,7, T) = Temo q(s057,)a(s;,7,.5)
+ 1]‘t:=‘t:,+1,.s'=x, (1 - q(st’Tt)) . (6)
Combining Equations 4, 5, and 6, we obtain the Bayesian update

equation, as

THS(XHI |s,T)

X {ﬂ T=OZ J q(s 7 )a(setns)p, (5,7 |x1: )ds,
Tt

kA

P (T ) =

+ Tso(1 = g(s,T = 1))p(s,T = 1xp) |- (7

In the special case with g = q(t,), @ = a(s.11|s,), and g = g(x/|s,), we
obtain the slightly simpler Equation 2. In addition, we note that, in
the HI condition, the change probability is constant, g(t) = ¢; in this
condition, we can marginalize over the variable 7 to obtain a closed
recursion over the state posterior, as

Pt (S|x1:41) = g(xt+l Is) [‘IJa(s|51)Pr(st|xl - )ds,

St

+a—mmmM»} ®)

1
Zit

Derivation of the Suboptimal Models and Analysis of
Their Behaviors

IncorrectQ Model

In the IncorrectQ model, the two quantities governing the shape
of g(t), A and T are treated as free parameters, and we explore how
varying these parameters impacts behavior, as compared to the
Optimallnference model.

Keeping T constant at 10, and varying A from 0 (HI condition) to 1
(HD condition), we find that the learning rate as a function of the
run-length gradually morphs from the HI, monotonically decreas-
ing curve, to the HD, non-monotonic and “smile-shaped” curve
(Figure 12B). A similar behavior obtains at any fixed value of T,
with the difference that the minimum of the HD curve is shifted to
smaller t for smaller 7, and to larger 7 for larger 7. In other words,
for fixed T, a higher value of A, that is, a sharper slope of the change
probability, leads to a higher learning rate at run-lengths compa-
rable to T. (note that, for 7 = 20, the minimum of the learning rate
occurs at run-lengths larger than 10, hence the non-monotonicity is
not apparent in Figure 12B.) Conversely, for a fixed A > 0, the
minimum of the learning rate occurs at a run-length comparable to
T which, precisely, determines when change points become likely.
Finally, for A = 0, the change probability is constant and there is
no increase in the learning rates; these are, however, slightly higher
for smaller T, because in that case the change probability, g = 1/T,
is larger, so a new stimulus is more likely to be interpreted as
stemming from a change point.

A subtlety that any analysis has to grapple with is that the statistics
of responses depend not only on the inference process, but also, of

course, on the statistics of the stimuli. To tease the two effects apart,
for each IncorrectQ model subjects (with differing values of A and
of T) we computed the response behavior in presence of either signal:
the HI signal, characterized by a constant change probability, g = .1,
and the HD signal, characterized by a change probability, ¢(t),
varying with the run-length as a sigmoid with parameters A = 1
and T = 10. We note that the impact on behavior of changing the
signal is modest, as compared to the impact of changing the model
subject’s beliefs (Figure 12B). This indicates that the discrepancy in
human behavior in the HI and HD conditions does not originate
primarily from the statistics of the signals, but rather from the different
beliefs on the temporal statistics of the signals, held by the subjects.

Paralleling the behavior of learning rates, the repetition propensity in
the HD condition peaks earlier or later depending on the value of 7, and
its shallowness depends on the value of A (Figure 12C). A belief in a
shorter average inter-change-point interval, 7, leads to a smaller
repetition propensity: Assuming frequent change points enhances
the frequency of changes in one’s estimate.

Human subjects correctly believe that g is not constant in the HD
condition, and they use this belief in their inference process, but they
may hold an inexact representation of the shape of g(t) (Figure 12).
This, however, is not sufficient to capture data quantitatively:
subjects exhibit both higher learning rates and more frequent
repetitions than in the optimal model (Figure 5), an observation
that cannot be explained by manipulating A and 7 in the IncorrectQ
model; in the latter, high learning rates are accompanied by lower
repetition propensity, and vice versa. Thus, and letting alone the
issue of variability, an erroneous belief on the change probability,
q(7), is insufficient to model experimental data.

tMean Model

Derivation. This model is a generalization of the model intro-
duced by Nassar et al. (2010). The approximate joint probability of
the state and the run-length, which we denote by p,(s,t|x;.;), is
assumed, in this model, to vanish at all values of the run-length,
except for one, which we call the “approximate expected run-
length” and which we denote by T,. Hence,

Pi(sslxy,) = Sr,i,ﬁr(s’ft|xl 1) )]

where 8.z is the Kronecker delta. As in the optimal model (see
Equation 2), we use Bayes’ rule and the parameters of the task to
derive the update equation, as

Pr+1 (S,’C Xii41) = g(x41ls) |:]]T=0q(%t)Ja(s|St)pt(st’%t|x1 Zt)dst

St

1
Z1+l

+hﬁHU—QGMM@@Vmﬂo (10)

This distribution is nonvanishing for two values of the run-
length, 0 and 7, + 1, which correspond to the two possible
scenarios: with and without a change point at trial z. We use
this distribution to compute the approximate expected run-length
at trial # + 1, T,,, and the approximate posterior at trial ¢ + 1,
Dis1(8,T|x1.141)- First, we obtain the probability of a change point
at trial 7 + 1,
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and we use it to compute the approximate expected run-length at
trial  + 1:

HUMAN INFERENCE IN CHANGING ENVIRONMENTS

Figure 12
Lllustration of the IncorrectQ Model With Various Beliefs on the Shape of the Change Probability

(A) 1 Belief : A\=0; q=cst=1/T Belief : A=0.5 Belief : A= 1.
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Note. (A) Examples of beliefs in IncorrectQ models. Change probability, g(t) (top line), and resulting inter-change-point interval
distribution (bottom line), for constant ¢ (left column), sigmoid-shaped g(t) with slope parameter A = 0.5 (middle) and A = 1 (right); and
for average interval length, 7, of 6 (dashed line), 10 (solid), and 20 (dotted). The “true” HI signals used in the task correspond to T = 0,
T = 10, while the HD signals correspond to A = 1, T'= 10. (B, C) Average learning rate (B) and repetition propensity (C) as a function of
the run-length, in IncorrectQ models performing optimal inference with various beliefs on the change probability, g(t), and presented with
HI signals (blue) and HD signals (orange).

Prat (SIx101) = E Pre1 (8T]x1001)

T

1

= 7 Q(%t)Jg(xt+1 |S)JL1(S‘S,)]J,(S,,’T7,|X1;,)ds,ds, (1)
1+l

s S, ~
' Prat (8,71 141) = Sr,fH,PtH (slx1:41)-

This model has no parameter.

23

=Pt (5T = 0xp 1) + Pra (5T =T + 1xy141)s

13)

Behavior. While the optimal marginal distribution of the run-
lengths, p,(t|x,.,), spans the whole range of possible values of the

run-length, it is approximated, in the tMean model, by a delta
function on a single value, T,. In the HI condition, the change

Tl =t - 0+ (1 - Q)% + 1). 12)

probability, g, does not depend on the run-length, ; the approximate

joint distribution evaluated at t = T,, p,(s,T;|x;.,), is equal to the
optimal posterior distribution on the state, p,(s|x;.). (Compare

Second, we approximate the posterior (Equation 10) by margin-
alizing it over the run-lengths, and multiplying the result by a
Kronecker delta which takes the value 1 at T, :

Equation 8 to the combination of Equations 10 and 13.) As aresult,
the tMean model computes the optimal posterior on the state, and,
thus, the responses in this model are the same as those in the optimal
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model, that is, the tMean model is optimal in the HI condition. In the
HD condition, by contrast, the change probability, g(t), depends
on the run-length. The tMean model evaluates this function at
only one run-length, T,, an approximation of the mean run-length;
as compared to the optimal model, it fails to capture fully the
consequences of the dependence of the change probability on the
run-length (Figure 1D). The learning rates in this model are higher
than the optimal ones for short run-lengths, and lower than the
optimal ones for long run-lengths (Figure 13B); and the repetition
propensities are lower than the optimal ones for short run-lengths,
and higher than the optimal ones for long run-lengths
(Figure 13C).

TNodes Model

Derivation. This model generalizes the one introduced by
Wilson et al. (2013). In this article, the authors interpret a
change-point setting similar to ours as a “message-passing” graph
where run-lengths are nodes, weighted by their marginal probability
pdt|x1.,), edges are characterized by the change probability, ¢, and
“messages” are passed along edges from one node to another. More
precisely, we compute the marginal probability of the run-length,
using Equations 5 and 6:

EQ(Tt)Pt(TAxl:t)
(1 - q(’t - 1))pt(T - 1|x1:1)

Hence, at trial ¢ + 1, the weight of a node t (i.e., the marginal
probability of the corresponding run-length) is equal, if Tt =0, to a
sum of the marginal probabilities of all nodes at trial ¢, T, weighted by
their corresponding change probabilities, ¢(t); and, if T > 0, it is the
probability of the node T — 1, at trial #, weighted by the probability
that there was no change, 1 — g(t — 1). Taking a different view, one
can reformulate these weighted sums of probabilities as transfers of
probability masses, as follows. Each node t sends two “messages™: a
“no-change-point” message is senttonode T + 1 so as to set its weight
to (1 — g(7))p,(t|x,.), and a “change-point” message is sent to node
7 = 0 to increase its probability by g(t)p,(t|x;.,). This is the message-
passing algorithm. Wilson et al. (2013) assume a change probability,
g, that is constant; a likelihood, g, which belongs to the exponential
family; and a state transition probability, a(s,,;), that does not
depend on the previous state, s,, and which is a conjugate prior of
the likelihood. They show that in this case each node can be seen as
implementing a delta-rule, and the optimal Bayesian model
amounts to the weighted sum of these delta-rules.

The authors then “reduce” this model by removing nodes and
accordingly revise the message-passing algorithm and each node’s
update rule. We only focus on the aspects of the model that will be
used in our TNodes implementation. The set of new nodes comprises
“virtual” run-lengths / € {lo,ll, o, lN}. A node I, with i # 0, now
sends three messages: one to P , one to the next node li“, and one to
itself. The “change-point” message remains the same as in the
previous algorithm, that is, the quantity q(li)p,(li|x1;,) is sent to
[ (i.e., this quantity is added to the probability of this node). The
“no-change-point” message is now split in two, one message being
sent to the next node, I'', and the other one being a self-passing
message (i.e., sent to itself, li). The authors seek the relative weight
w(l') assigned to the self-passing message which gives an average
run-length increase of 1 (i.e., [E(lt+1|l,i, no change) = F+1. They

ift=0
. (14
otherwise

P (thxy ) = {

find w(l') = l';,ljﬁl’,l for i # N and w(I¥) = 1. The next node, I! * !,
hence receives the message (1 — w(l))(1 — g(I"))p«I'|x;.,). With the
assumptions mentioned above on ¢, g, and a, the model can again be
understood as “a mixture of delta-rules.”

We implement these ideas in our tNodes model. Instead of
pds,t|x1.), we consider the probability distribution p,(s,|x;.,) and
apply the same Bayesian and marginalization equations used in
Equations (4) and (5). The main difference of the new model resides in

the transition probability, p,.i(s,/|s,l), which becomes

Pt (8dls00) = Vimpq(s,l)a(s,r.s)
+ ‘]]l:l,,s:s[ (1 - q(snll‘))w(lt)

+ V5=, (L= q(spl)) (L= w(lh)). (15)
Combining Equation 15 to Equations 4 and 5 adapted with /, we
obtain an update equation similar to the full Bayesian update equation
(Equation 7), with an additional term corresponding to the ability of
nodes for self-passing messages. The model is parameterized by the
number of nodes, N, but also by the values of the nodes. We chose
the possible values of the nodes to be in the set {0, 2.5, 5, 7.5,
10, 12.5}. When fitting the model for a given N, all the models
corresponding to every possible choice of N. nodes within these
values, were computed, and the best-fitting one was chosen.
Behavior. In the HI condition, the model computes the optimal
posterior on the state, p,(s|x;.,). Thus, as for the tMean model above,
the responses in the TNodes model are the same as those in the optimal
model, in the HI condition. In the HD condition, the greater the
number of nodes, the more faithfully the model approximates optimal
behavior (Figure 13B, C). The learning rates are higher than the
optimal ones for short run-lengths, and lower than the optimal ones
for long run-lengths (Figure 13B). The repetition propensities are
higher than the optimal ones for long run-lengths; for short run-
lengths, they are appreciably closer to the optimal ones, in the model
with five nodes, than in the model with one node (Figure 13C).

tMaxProb Model

Derivation. In the tMaxProb model, we assume that we have,
at trial 7, an approximation of the joint distribution of the state and
the run-length, which we denote by j,(s,t|x, ., ), and we assume that
the approximate marginal distribution of the run-lengths, p,(t|x; ),
is nonvanishing for no more than N, values of the run-length. Upon
receiving a new stimulus, we perform a Bayesian update of the
approximate joint distribution, p,(s,t|x;.;), as in Equation 2, and
obtain the posterior, p,.1(s,T|X1..+1), from which we derive the
marginal distribution of the run-lengths, p,.i(t|x..41). If, at trial
t, the run-length takes a given value, t,, then, at trial # + 1, it can only
take one of two values: O (if there is a change point) or T, + 1 (if there
is no change point). Hence, if the marginal distribution at trial ¢,
P.(t|x;.,), is nonvanishing for at most N, values, as we assume, then
the updated distribution, p,,(t|x;..+1), is nonvanishing for at most
N; + 1 values. In the case that this distribution is nonvanishing for
less than N, + 1 values, we do not perform further approximations,
at this stage. In the other, more generic case, that is, if N; + 1 values
of the run-length have a non-zero probability, then we identify the
most unlikely run-length, T = arg min p,,;(t|x|..+1), and we approx-
imate the posterior as
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Figure 13
Behavior of the Limited-Memory Models as Compared to the Optimallnference Model
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Note. (A) Schematic illustration of the marginal distribution of the run-length, p(t), in each model considered. The Optimallnference model assigns a
probability to each possible value of the run-length, 7, and optimally updates that distribution upon receiving stimuli (first panel). The TMean model uses a
single run-length which tracks the inferred expected value, (t) (second panel). The TNodes model holds in memory a limited number, N, of fixed hypotheses
on T; N, = 2 in this example (third panel). The tMaxProb model reduces the marginal distribution by discarding less likely run-lengths; in this example, two
run-lengths are stored in memory at any given time (fourth panel). (B, C) Average learning rate (B) and Repetition propensity (C), as functions of the run-
length, in the Optimallnference model, the tMean model, and the TNodes model with N, = 1, 2, and 5, in the HD condition. The HI condition is not
displayed as the tMean and TNodes models do not differ from the Optimallnference model in this condition. (D, E) Average learning rate (D) and Repetition
propensity (E), as functions of the run-length, in the Optimallnference model and the tMaxProb model with N; = 1,2, and 5, in the HI condition (top panels)
and in the HD condition (bottom panels). (F, G) Normalized mean squared error relative to the learning rate (F) and the repetition propensity (G), as compared
to the Optimallnference model, for the TMean model, which has no free parameter, and for the TNodes and tMaxProb models with N, = 1-5.

large run-lengths, in the HD condition (Figure 13D, second

0 if T=1* 16 panel, dotted line). However, in other situations (HD condition
%pm(s,r\xl:m) if T#1% (16) for shorter run-lengths, and HI condition for all run-lengths),
change points are not likely (¢ < .5). Hence, in most cases, a

where Z is a normalization constant equal to 1 — py (T*|x).41). vanishing run-length, that is, the hypothesis of a change point,
Behavior. Even with N; = 1 (one memory slot), the tMaxProb minimizes the marginal distribution, p,,(t|x;..+1), and its proba-
model captures qualitatively the optimal, high learning rates for bility vanishes in our approximation: p, (Tt =0|x;..4;) =0.

Prar (5T 1) = {
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In other words, change points tend to go by undetected. Conse-
quently, suppressed learning rates and enhanced repetition
propensity obtain in a model with a single memory slot
(Figure 13D, E).

To compare our suboptimal models to the Optimallnference
model, we compute their NMSE with regard to the responses of
the optimal model (as opposed to the responses of the human
subjects, as we do in the main text). With a NMSE for learning
rates at .21, the tMaxProb model with N, = 1 is closer to optimality
than the tMean model (NMSE of .88) and the TNodes model with
one node (NMSE of .95), in the HD condition (Figure 13F). The
high repetition propensity of the tMaxProb model, however, leads
to a larger error for this measure (NMSE of 1.81), as compared to the
tMean (0.14) and t«Nodes (0.61) models (Figure 13G). Adding a
second memory slot allows for a better approximation of the
marginal distribution, p,(t|x.,), in the tMaxProb model, as demon-
strated by its close-to-optimal behavior with N; = 2, both in terms
of learning rates (NMSE of 0.043; compare to the TNodes model:
0.89) and repetition propensity (0.097; compare to the tNodes
model: 0.29; Figure 13F, G).

tSample Model

The tSample model is identical to the tMaxProb model, except
that the run-length t* is chosen randomly, that is, sampled from the
distribution [1 — pyyi(t|*.001)V/ze1, Where z,, is a normalization
factor. The stochastic nature of the update rule on the probable run-
lengths influences the learning rate and the repetition propensity. In
the case N; = 1, there is, at trial ¢, a single run-length, t,, with non-
vanishing probability. At trial # + 1 the model subject chooses
randomly between the no-change-point scenario, with T,
=1,+ 1, and the change-point scenario, with t,,; = 0. Hence,
the model can incur “false positives” (a change-point scenario is
opted for in the absence of a true change point) and “false negatives”
(a true change point goes undetected by the model subject), and
these occur stochastically. In most trials, the change-point scenario
is less likely than the no-change-point scenario; in the tMaxProb
model, the former would be eliminated, but it occurs with some
probability in the TSample model, leading to false positives, which
induce higher learning rates. Similarly, average learning rates of the
tSample model are higher than the optimal ones (Figure 14A). The
false negatives, in which change points go undetected, result, as in
the T™MaxProb model, in higher repetition propensities (Figure 14C).
With increasing memory capacity, N,, the behavior of the model
approaches optimality, as reflected in the decrease of the NMSEs for
the learning rates (Figure 14B) and the repetition propensities
(Figure 14D).

A qualitatively new aspect brought in by the tSample model is
the stochasticity in the inference step, which is reflected in
behavioral variability and measured by the standard deviation
of the responses of a model subject. Quantitatively, false nega-
tives have a large impact on the behavioral variability. A model
subject can however correct for a false negative during the few
trials that follow a true change point, that is, at short run-lengths.
This occurs randomly, in the tSample model, resulting in vari-
ability in responses. At longer run-lengths, the posterior
probability of a change point, p,(t = 0|x;.,), is dominated by
the shape of the change probability, g(t), rather than by the
observed evidence. In the HI condition, g is constant; hence, the

variability reaches a plateau for run-lengths larger than about 2
(Figure 14E, top panel). In the HD condition, as g(t) is an
increasing function of the run-length, the variability increases
for run-lengths larger than 5, resulting in the “smile shape” of the
curve (Figure 14E, bottom panel). As the parameter N, is
increased, the behavior of the model approaches optimality, and,
correspondingly, the standard deviation of the responses of the model
subject decreases (Figure 14F).

ParticleFilter

Derivation. The ParticleFilter approximates the posterior by a
weighted sum of delta functions (Equation 3). To obtain the
approximate posterior at trial # + 1, upon receiving a new observa-
tion, x,, 1, we start by writing the Bayesian update (Equation 2) of
the approximate posterior at trial ¢, p, (s, T|x; :,), as

1

Tﬂg(xﬁlh)

X Z th+1 (53 TSy Tt)ﬁt (Ss T|x) :t)dst’
T

s

Pr+1 (S’T|x1:t+1) =

an

with the transition probability, p,, (s, T|s; T,), defined in (Equa-
tion 6). Injecting the expression of the approximate posterior at
trial # (Equation 3), we can rewrite the Bayesian update as a sum
of Np functions:

Np

1 . o
P (8. T|x1) = Z_Z Wig(Xes1[8)Pryr (5, TSt 1), (18)
t+1 51
where
Prr1 (8.7 S;» T;) = Z th+1 (Sv T‘sts r,)S(s - Sﬁ)ﬁmgdsp (19)

T
ros,

The interpretation of this form becomes apparent if we intro-
duce, for each particle, a probability distribution over (s, T),
defined as

841 18)Pi (5, T|Si» T;)

. (s, Tlst, T, x = - s 20
t+1( | tr bt t+l) P(Xt+1|S§,’C§) ( )

where the denominator is obtained by normalization,
POl ) = X [ elxalpan(s el s, @D

T
s

The distribution 7,4 (s, |s/, T, x,+1) is none other than the
Bayesian update of a single particle (i.e., Equation 17 with the
approximate prior, p,(s, t|x;.,), replaced by &(s— sf)ST,T;-),
and the full Bayesian update is a weighted sum of these Np
functions:

Np

wip(glsl. )
Pt+l(ss T‘xlzr+l) = Z%
i=1 t+1

Tt (5, T|S§s T, Xip1)- (22)

To complete the definition of the particle filter, we have to
formulate a prescription for selecting the Np particles at trial
t + 1. Following the literature, instead of sampling the full Bayes-
ian update, p,.(s,T|x1..41), we sample independently each
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Figure 14
Behavior of the tSample Model as Compared to the Optimallnference Model
A C)io E
( )0_44\ Optimallnference ( )40%‘ ( )6
\ No=1 :
N, =5 — ,
0.21 ! ;320%‘
L0171 £ 10%1 5
s |(H]] ST 3
g 9 S 0% 1~ S
S04{ HD 8 40%] HD|| =
o = <=
~ B ano 3
30% =
0.3 C§ ‘ & 4]
0.2 20%7
2<
0.14 10%1
HD
0 T T T T 0% T T T 01 T T T T
0 2 4 6 8 10 0 2 6 8 10 0 2 4 6 8 10
Run-length Run-length Run-length
4
(Bk).?r (D) o (F~) ’ — HI
S 4
31 3 HD
2021 M 53
= = 21 =
= = 52
0.11 <
1 S
TN
0- 0- 0= - - T -
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
N, N, N,

Note. (A, C, E) Average learning rate (A), repetition propensity (C), and standard deviations of responses (E), as a function of run-
length, in the Optimallnference model and the tSample model with N, = 1, 2, and 5, in the HI condition (top panels) and in the HD
condition (bottom panels). (B, D) Normalized mean squared error on learning rates (B), and on repetition propensity (D), as compared to
the Optimallnference model, for the tSample model, with N. = 1-5. (F) Standard deviation of the responses of the tsample model, as a

function of N..

component of the mixture, n,+1(s,'r|s,i, T x,41), to obtain the
updated particles, (sir1, i ). To each sample, that is, to each
particle, is assigned the weight of the corresponding component in
the mixture, w},; = wip(x41[s, T1)/Z;1. In the rare cases in which
p(xp1lsd, ©) = 0, that is, if new data invalidate particle i, and thus,
n,+1(s,‘r:|s,i, T x41) = 0, we resample a new particle i from the
other particles.

In practical applications of particle filters, there exists a “weight
degeneracy” risk, whereby the weight of one particle may over-
whelm the combined weight of the others. A common method to
mitigate this shortcoming is called “resampling.” It is a stochastic
method in which the particles with high weights are likely to be
duplicated, while the particles with low weights are likely to be
eliminated. To achieve this, we use the Np-dimensional categorical
distribution parameterized by the Np weights of the particles, that is,
p(i) = w{. We sample this distribution Np times, and obtain, thus, a
set of Np indexes, {j;},. We use those to define the new Np
particles: for each particle i, we replace (s, t’) by (sﬁ ‘ci"), and we
set all the weights to 1/Np. In other words, the set of particles is
randomly sampled with replacement, Np times. Particles with low

weights are unlikely to survive this scheme, as compared to particles
with high weights. For the sake of simplicity, we resample at
each trial.

A possible consequence of resampling is the “sample impover-
ishment” problem, that is, the loss of particle diversity (all particles
end up bearing the same state). A common procedure in the particle-
filter literature that addresses this problem is “particle rejuvenation,”
which increases the variability of particles by “jittering” their
parameters. Here, however, this issue is mitigated naturally by
the structure of our problem, as a new state is sampled from the
distribution a(s|s,) every time a new particle carries a change-point
run-length (t = 0), thus renewing the set of particles. In addition,
introducing a rejuvenation step implies choosing arbitrarily a
transition kernel and an acceptance rule for candidate particles
(usually, the Metropolis—Hastings rule is adopted). Many kernels
used in the literature come with additional parameters. While
the rejuvenation method would be an interesting addition to our
model, the performance of our implementation of the particle-
filter model does not warrant the introduction of this new layer
of complexity.
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Behavior. With a single particle (Np = 1), the posterior
is reduced to a unique sample, (s},'ci) and, thus, the model
subject has access to a single “hypothesis” on the change
probability, g(t;). The particle can then evolve in one of two
ways: either it opts, with this probability, for a change-point
scenario, in which the new stimulus, x,, 1, is the only information
available on the new state, along with the prior transition
probability, and thus the learning rate is close to 1, or, with
probability 1 — g(t}), a no-change-point scenario is opted for,
and the particle stays put (si,; = s)), that is, the learning rate
vanishes. As a result, when averaged over several instantiations
of the particle filter, the behavior of the learning rate as a function
of run-length resembles that of the change probability, ¢(t), that
is, constant in the HI condition, and increasing in the HD
condition (Figure 15B), a behavior qualitatively different from
either that of the Optimallnference model or the human re-
sponses. But it is sufficient to add no more than a second particle
for the model to capture the main trends in the learning rate
(a decreasing learning rate in the HI condition and smile shape
in the HD condition). The NMSE drops sharply from 2.2 for Np = 1
to less than 0.7 for Np = 2. As additional particles are included in

the model, the latter approaches optimality (the NMSE becomes less
than .1 for Np > 70; Figure 15C).

As mentioned, sampling in the particle filter induces variability in
behavior: two particle filters receiving the same sequence of ob-
servations do not respond with the same sequence of estimates.
Since the stochasticity stems from the sampling of an (approximate)
posterior, the resulting variability scales with the width of the
posterior. As measured by the standard deviation of responses, it
decreases with the run-length, in the HI condition. In the HD
condition, it decreases at short run-lengths before increasing at
longer run-lengths (Figure 15F). This behavior reproduces, at least
qualitatively, that of the subjects (compare to Figure 5C). The
greater the number of particles in a particle filter, the closer the
latter approximates the Optimallnference model; the standard devi-
ation of the responses is a decreasing function of the number of
particles (Figure 15G).

Since it operates on a low-dimensional spatial representation, the
particle filter naturally predicts a higher repetition propensity than
the Optimallnference model does. More specifically, the posterior is
nonvanishing for only a finite (possibly small) set of values at each
trial, and it is more likely than in the optimal case that the subject

Figure 15
Hllustration of the ParticleFilter Model and its Behavior
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Note. (A) Distribution of particles during inference, compared with the optimal posterior distribution, for particle filters with Np = 1 and 150. Each

particle is a point on the (s,7) plane, equipped with a weight. Only the spatial components s are represented here, as vertical bars (gray for Np = 1, green
for Np = 150). Bars heights are proportional to the corresponding weights, but some are truncated due to the choice of scale, which emphasizes weight
diversity. Upon receiving a new stimulus, x,,; (blue), a particle i is updated by sampling p,.(s,t|s’,t,,X.+1). This may or may not involve a change
point, in which case s,';r, #+ s,i. (B, D, F) Average learning rate (B), repetition propensity (D), and standard deviations of responses (F), as a function of
run-length, in the Optimallnference model and the ParticleFilter model with Np = 1, 2, 10, and 100, in the HI condition (top panels) and in the HD
condition (bottom panels). (C, E) Normalized mean squared error on learning rates (C), and on repetition propensity (E), as compared to the
Optimallnference Model, for the ParticleFilter Model, with Np = 1-150. (G) Standard deviation of the responses of the ParticleFilter model, as a

function of number of particles, Np.
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model’s estimate remains unchanged following stimulus presenta-
tion. This effect is quantitatively appreciable and leads to repetition
propensities which are multiples of those in the Optimallnference
model. Again, the repetition propensities decrease toward their
optimal values as the number of particles, Np, increases. The
corresponding NMSE drops from 202 for Np =1 to 24 for
Np = 150 (Figure 15D, E).

Sampling Model

In the Sampling model, instead of using the Bayesian posterior to
maximize its expected score, a model subject samples its response
from the marginal posterior on the states, p,(s|x;.,). In spite of this
suboptimal selection rule, the average learning rate as a function of
the run-length has a behavior similar to the optimal one (decreasing
in the HI condition, smile-shaped in the HD condition), albeit with
higher average values (Figure 16A). The repetition propensity also
behaves similarly to the optimal one, but is suppressed in magnitude
due to sampling (Figure 16B). Finally, as expected by construction,
the Sampling model leads to behavioral variability, and the ampli-
tude of the latter scales with the width of the posterior distribution
(Figure 16C).

Normalized Mean Squared Error

This section provides some details on the NMSE we use to
compare the results of the various models to the Optimallnference
model and to human data. Let y;(t) be the value at run-length 7 of the
quantity of interest i (learning rate, repetition propensity, or standard
deviation of responses), as observed in data or as resulting from the
optimal model, and 3;(t) the value resulting from a suboptimal
model. The mean squared error is MSE(9;) = 13 (5;(t) — yi(1))%
where 7 is the number of run-lengths. We want to be able to compare
the errors for different quantities of interest. By dividing the MSE by
the variance of y;, we obtain the normalized mean squared error,
which is translation-invariant and scale-invariant:

_ MSE($) _ 3. (i(x) —yilr))?

— )
NMSE; = Varly] Y (i -yil0)?

(23)

where y; is the average yi(t). For model fitting, we then use the
average of this quantity over the three quantities of interest (three-
error measure) or over two of them (two-error measure).

Approximate Formulation of the Bayesian Information
Criterion

For a given subject in a given condition (HI or HD), we denote the
probability of a sequence of T responses, $§;.;, by p(3;.7). In the
models with deterministic inference, the joint probability of re-
sponses is the product of the probabilities of each of the responses in
the successive trials:

pBi.r) = I p(3,). 24)

This independence condition does not hold for the models with
stochastic inference. We describe, here, how we overcome this issue
in the case of the ParticleFilter model, which is the most involved
model we consider and the most costly computationally. We denote
by N the number of particles, and we define the “internal state” of a
particle filter at time ¢ as the joint states of its N particles, each
defined by a location, s,, a run-length, t,, and a weight, w,. We denote
the internal state by o,, and the sequence of the internal states
throughout a run with T trials by o;.1. The probability of a subject’s
sequence of responses is expressed in terms of the probability of the
sequences of internal states, as

pGr.r) =Y _pBilorr)p(or.r). (25)

Oy:1

We note that conditional on the internal state, the responses are
independent:

Figure 16
Behavior of the Sampling Model, as Compared to the Optimallnference Model
((l)o\g Learning rate (B) Repetition propensity (C) Standard deviation
O 7 T
N —— HI Sampling 20% 1
0.61 HD —— Optimallnf. 6l
15%1
0.41 10% 51 e
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Note. (A, B) Average learning rate (A) and repetition propensity (B), in the Sampling model (dashed lines) and the Optimallnference model (solid
lines), as a function of run-length, in the HI and HD conditions. (C) Standard deviations of responses, as a function of run-length, of the Sampling
model in the HI and HD conditions. The Optimallnference model exhibits no variability.
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T
p(8o1.1) =I£IIP(§,‘0',). (26)

In other words, a single realization of the particle filter can be
thought of as a model with deterministic inference. To compute
the probability of responses, however, we must determine the
distribution of the realizations of the internal states of the particle
filters, p(c1.7). The support of this distribution is the Cartesian
product of the NT internal states of the particle filter, and, hence, its
size grows exponentially with NT. Estimating a probability distri-
bution over this space seems computationally intractable; we can,
however, carry out an approximate calculation of the probability
distribution.

Our method of approximation relies on a Monte-Carlo estimation:
we run M = 500 simulations of the inference model (ParticleFilter
or tSample), and consequently we obtain M points 6. in the space
of possible sequences of internal states. For each realization of the
internal state, we know the probability distribution of the response,
conditional on the state, p(3;|o,). A Monte-Carlo approximation of
the probability of a sequence of T responses, p(8;.7), is then
obtained as

o 1 .
p(1.1) ZMGZ pBi.tlor.1), 27)
That is,
o 1 T
pir) =17 > I p(ifoy), (28)
T

where the sum is taken over the M sampled sequences of internal
states. This empirical approximation is satisfactory provided M is
sufficiently large, so as to overcome the exponential growth of the
number of possible sequences.

For any sampled sequence of internal states, o;.p, it is
extremely likely that at least one response, §;, has vanishingly
small probability given the corresponding internal state, o,, that
is, p(3;/o;) =~ 0. In other words, given a sequence of responses,
§1.1, it is extremely unlikely that any one of M sequences of
internal states produces §; .y, that is, it is prohibitively improbable
that any one of M sequences of internal states account simulta-
neously for 1,000 responses. Thus, if we carry out the Monte-
Carlo approximation naively, we underestimate severely the
likelihood of the data. (We emphasize that, in that case, the
low value of the likelihood does not reflect an inherent inability of
the model to account for the data, but rather the poor sampling of
the internal states in the model.)

We can circumvent this practical problem by dividing our
experimental runs into shorter sequences: While our sample is
too small for obtaining a useful approximation of the density of
possible sequences of 1,000 successive internal states, we can treat
this density over shorter sequences. In the extreme case, we can
consider the (Monte-Carlo-approximated) likelihood of just one
response, §,, at a trial #:

~n 1 N
p(3) = M § p(3o,). (29)
o7
Here, the M samples, .1, are used to estimate a one-dimensional
density, instead of a 1,000-dimensional density. The joint likelihood

of all responses can then be approximated as the product of the
likelihoods of each response, that is,

e[

ﬁ(ﬁlzT)zt lﬁ(ﬁr)' (30)

This approximation, however, in effect makes the crude assumption
that successive responses are independent, and thus neglects the
sequential dependence in responses that a model may predict. For
instance, this approximation vastly underestimates the likelihood of a
model that correctly predicts an appreciable probability of repetitions.

In order to obtain an approximation of the likelihood that takes
into account the sequential dependence of responses, and which can
be computed on the basis of M samples, we choose to compute the
likelihood of responses over sequences of 10 successive trials,

~ 1
P(3:149) zﬁzp(gt:t+9|6r:t+9)' (€Y}

op:T

We fit the models by evaluating how well they reproduce the
responses in all the 10-trial-long sequences. More precisely, we
associate to each model a BIC calculated as

BIC = —ZIn{ I 5(@,:,+9)] +klnn, (32)

=1,11,..

where k is the number of parameters in the model under consider-
ation, and »n is the number of data points. The specific choice of
sequences with 10 trials is arbitrary; in our analyses, we repeated the
calculations for different choices, which yielded comparable results.
We chose to illustrate this choice as it corresponds to sequences no
shorter than the mean inter-change-point duration, which optimizes
the precision of the approximation.

We note that our approximation of the ParticleFilter model’s
BIC could be interpreted as a (possibly still approximate) calculation
of the BIC of a different model. Specifically, the latter would include
a particular form of a particle-rejuvenation procedure in which all
the particles are replaced, every 10 trials, by as many new particles,
each randomly sampled from the distribution of possible particles, at
these trials. The rejuvenation kernel would thus be independent of
the rejuvenated particle (a possibility considered in the particle-filter
literature, see Chopin, 2002), and the acceptance rate would be equal
to 1, each 10 trials, and to O at other trials; thus, it would also be
independent of the particle (which is at odds with the usual form of
the rejuvenation procedures introduced in the literature).

Rational-Inattention Models and Models With Fixed
Repetition Probability

The rational-inattention models we present are inspired by the
model introduced by Khaw et al. (2017). We adopt their notation for
the new quantities introduced here to describe the response-selection
process. The major new ingredient in this model is that the subject,
after having observed a sequence of stimuli, x;., is assumed to
choose, first, whether to adjust or to repeat the current estimate (the
“repetition variable”); the repetition variable is a Bernoulli random
variable parameterized by the probability of adjusting, denoted
by A,(x1.;,8,_1) (and the probability of a repetition is thus
1 — A,(x1.,,8,_1)). Second, conditional on adjusting, the subject
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randomly chooses a new estimate (the “location variable”), sampled
from a distribution which we denote by p,(5;|x;.,). Thus, the model
subject’s distribution of responses conditional on the observed
stimuli and on the preceding response is

Piler8-1) = (1= Ay(xp:18-1))8(8 — 81)
+ A e Sim )1 (8¢l (33)

where 0 is the Dirac delta function.

Following the rational-inattention approach, we assume that the
distribution of responses conditional on the observed stimuli and on
the preceding response, p(3;|x;.;,5,_;), maximizes, under a con-
straint detailed below, the expected reward. Although the response
at trial ¢, §,, affects the rewards in subsequent trials, through the
ensuing distributions of responses (Equation 33), for the sake of
calculations simplicity we will carry out a “greedy” optimization in
the model. Specifically, we will assume that the distribution of
responses conditional on the observed stimuli and on the preceding
response, p(8;|x;.;,8,_1), is obtained by considering only the imme-
diate reward in expectation over the state, the response, and the
sequence of past stimuli, that is, the quantity

REJ Jp(xl;,)

X Jp(gt‘xl o8r-1) th(s‘xl . )R(8,5)dsds,dx; .. .dx,,  (34)

where R(3,s) is the reward obtained if the estimate is § and the
correct state is s.

In the absence of a constraint, the optimal response is obtained by
maximizing the expected reward implied by the sequence of past
stimuli, [p,(s|x;.;)R(3,s)ds, which we denote by r(3|x.;). We
assume, however, that it is costly for the subject to choose with
precision the repetition variable and the location variable, and this
hampers the ability to obtain this optimal estimate. Following Khaw
et al. (2017), we assume that the repetition variable (distributed
according to 1 — A,(x;.,,8,_;)), and the location variable in trials in
which the estimate is not repeated (distributed according to p,(3;|x; ),
each bear a cognitive cost proportional to measures of the amount
of information on the sequence of stimuli involved in choosing the
repetition variable and the location variable, respectively, defined as

1= j jpocl:,>DKL<At<x1:,,:vt_nnR)dxl dx, (39)

d "
an I, = J Jp(xlzt)At(xlinst—])

Dy (e (- |x1:,)Hﬁ)dx1 .. .dx,,

(36)

where A and | are the unconditional (not conditional on x;.,) proba-
bility of adjusting and the distribution of estimates, respectively. The
distributions A, (x;.;,8,_;) and p,(8|x;.,) are obtained as those that
maximize the quantity

R—wy I, — w1, 37

which expresses a trade-off between expected reward and cognitive
costs, where y; and y, are numerical coefficients specifying the
strength of the information-theoretic costs.

The solution to the optimization problem just posed is given by

1

By (8 |xyp) = Z(x1) s, eXP(WEIr(fr\xl 1) (38)
it
and
In At(xl:t»gtjl) —In A _
1 _At(xltt’stfl) 1-A
+ ‘Vl_l (‘VZ In Z(xlzt) - r(@t_l |x1:t))’ (39
where ~/n 1o n
Z(x1s) = | RG5) expls (3., (40)

The unconditional distribution of estimates, [(3), can be
approximated by a uniform distribution on the space of responses;
for the sake of simplicity, we use this approximation in our
calculations.

We implement four variants of this model and compute their
BICs (Table 2). In a first variant, no cost weighs on the repetition
variable (y; = 0), but a cognitive cost prevents the model subject
from choosing the optimal response (y, # 0, Table 1, second
row). By contrast, in the second variant of the model the repetition
variable is subject to a cost (y; # 0), while the location variable is
not (y, = 0); the latter follows, however, a NoisyMax response-
selection strategy (Table 2, third row). (If the location variable,
instead, were optimal, the model would assign a vanishing
probability to most of the subjects’ responses, and consequently
would yield an infinite BIC.) In a third variant of the model, there
are attentional costs weighing on both the repetition and the
location variable (y; # 0 and y, # 0, Table 1, fifth row). In
the fourth variant of the model, the location variable is subject
to a cognitive cost (y, # 0); the repetition variable, however, is
not derived in a rational-inattention approach, but instead is
random and governed by a fixed repetition probability (the first
variant, above, is a special case of this fourth variant of the model,
corresponding to a repetition probability set to zero; Table 2, sixth
row). For the sake of comparison, we implement a fifth model that
combines a fixed repetition probability with a NoisyMax strategy
for the location variable (this model does not feature any cognitive
cost; Table 2, fourth row).

The five models just presented make use of the Optimallnference
strategy. We implement, in addition, five other models in which the
repetition variable and the location variable are chosen as in these

Table 2

BICs of the Rational-Inattention Models and the Models With Fixed
Repetition Probability, Combined With the Optimallnference and
the ParticleFilter Inference Strategies

Repetition Location BIC
variable variable Optimallnf. ParticleFilter
— NoisyMax 495,063 482,358
— Rational inat. 524,719 486,217
Rational inattention NoisyMax 445,189 439,195
Fixed repetition prob. NoisyMax 445,354 437,197
Rational inattention Rational inat. 471,995 446,187
Fixed repetition prob. Rational inat. 472,810 446,848
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five models, but the Optimallnference strategy is replaced by the
ParticleFilter inference strategy (Table 2, last column).
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